PyoMyo - Python Opensource Myo library

Overview

PyoMyo

Python module for the Thalmic Labs Myo armband.

Cross platform and multithreaded and works without the Myo SDK.

pip install pyomyo

Documentation is in the Wiki, see Getting Started.

Playing breakout with sEMG

Python Open-source Myo library

This library was made from a fork of the MIT licensed dhzu/myo-raw. Bug fixes from Alvipe/myo-raw were also added to stop crashes and also add essential features.

This code was then updated to Python3, multithreading support was added then more bug fixes and other features were added, including support for all 3 EMG modes the Myo can use.

Note that sEMG data, the same kind gathered by the Myo is thought to be uniquely identifiable. Do not share this data without careful consideration of the future implications.

Also note, the Myo is outdated hardware, over the last year I have noticed a steady incline in the cost of second hand Myos. Both of my Myo's were bought for under £100, I do not recommend spending more than that to acquire one. Instead of buying one you should join the discord to create an open hardware alternative!

Included Example Code

pyomyo.py

Prints sEMG readings at 200Hz straight from the Myo's ADC using the raw EMG mode.
Each EMG readings is between -128 and 127, it is the most "raw" the Myo can provide, however it's unlikely to be useful without extra processing. This file is also where the Myo driver is implemented, which uses Serial commands which are then sent over Bluetooth to interact with the Myo.

plot_emgs.py

Starts the Myo in mode 0x01 which provides data that's already preprocessed (bandpass filter + rectified).
This data is then plotted in pygame and is a good first step to see how the Myo works.
Sliding your finger under each sensor on the Myo will help identify which plot is for sensor. With the terminal selected press Ctrl + C to kill the processes.

simple_classifier.py

Uses a simple nearest neighbour classifier and predicts gestures live.
Make a gesture with one hand then press a number key to label the incoming EMG values that class.
Once two classes have been made new data is automatically classified. Labelled data is stored as a numpy array in the data directory.

myo_multithreading_examp.py

Devs start here.
This file shows how to use the library and get Myo data in a seperate thread.

Myo Modes Explained

To communicate with the Myo, I used dzhu's myo-raw. Then added some functions from Alvipe to allow changing of the Myo's LED.

emg_mode.PREPROCESSED (0x01)
By default myo-raw sends 50Hz data that has been rectified and filtered, using a hidden 0x01 mode.

emg_mode.FILTERED (0x02)
Alvipe added the ability to also get filtered non-rectified sEMG (thanks Alvipe).

emg_mode.RAW (0x03)
Then I further added the ability to get true raw non-filtered data at 200Hz. This data is unrectified but scales from -128 and 127.

Sample data and a comparison between data captured in these modes can be found in MyoEMGPreprocessing.ipynb

Owner
PerlinWarp
Recently graduated CS student working on VR and BCIs.
PerlinWarp
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022