Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

Overview

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET

Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

DATA SET STORY:

  • This dataset was originally taken from the StatLib library at Carnegie Mellon University.
  • This is part of the data that was used in the 1988 ASA Graphics Section Poster Session.
  • The salary data were originally from Sports Illustrated, April 20, 1987.
  • The 1986 and career statistics were obtained from The 1987 Baseball Encyclopedia Update published by Collier Books, Macmillan Publishing Company, New York.

ATTRIBUTES: A data frame with 322 observations of major league players on the following 20 variables.

  • AtBat: Number of times at bat in 1986-1987 season
  • Hits: Number of hits in 1986-1987 season
  • HmRun: Number of home runs in 1986-1987 season
  • Runs: Number of runs in 1986-1987 season
  • RBI: Number of runs batted in 1986-1987 season
  • Walks: Number of walks in 1986-1987 season
  • Years: Number of years in the major leagues
  • CAtBat: Number of times at bat during his career
  • CHits: Number of hits during his career
  • CHmRun: Number of home runs during his career
  • CRuns: Number of runs during his career
  • CRBI: Number of runs batted in during his career
  • CWalks: Number of walks during his career
  • League: A factor with levels A and N indicating player's league at the end of 1986
  • Division: A factor with levels E and W indicating player's division at the end of 1986
  • PutOuts: Number of put outs in 1986-1987 season
  • Assists: Number of assists in 1986-1987 season
  • Errors: Number of errors in 1986-1987 season
  • Salary: 1996-1987 annual salary on opening day in thousands of dollars
  • NewLeague: A factor with levels A and N indicating player's league at the beginning of 1987
Owner
Pinar Oner
Data Engineer | Project Coordinator
Pinar Oner
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Pragmatic AI Labs 421 Dec 31, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022