U-Net for GBM

Overview

My Final Year Project(FYP) In National University of Singapore(NUS)

You need

Pytorch(stable 1.9.1) 

Both cuda version and cpu version are OK

File Structure

📦FYP-U-Net
 ┣ 📂data
 ┃ ┣ 📂imgs
 ┃ ┃ ┣ 📌···.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂masks
 ┃ ┃ ┣ 📌···_mask.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂PredictImage 
 ┃ ┃ ┣ 📌0.tif
 ┃ ┃ ┣ 📌1.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂SaveImage
 ┃ ┃ ┣ 📌0.tif
 ┃ ┃ ┣ 📌1.tif
 ┃ ┃ ┗ ···
 ┃ ┗ 📂Source
 ┃ ┃ ┣ 📂TCGA_CS_4941_19960909
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_1.tif
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_1_mask.tif 
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_2.tif
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_2_mask.tif 
 ┃ ┃ ┃ ┗ ···
 ┃ ┃ ┣ 📂TCGA_CS_4942_19970222
 ┃ ┃ ┗ ···
 ┣ 📂params
 ┃ ┗ 📜unet.pth
 ┣ 📓README,md
 ┣ 📄data.py
 ┣ 📄net.py
 ┣ 📄utils.py
 ┗ 📄train.py
  • 'data' dir contains the origin dataset in 'Source' dir. And the dataset can be download in Kaggle (https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/). And also you can use different dataset.
  • 'imgs' contains images and 'masks' contains corresponding masks to images. Corresponding masks have a _mask suffix. More inforamtion you can check in kaggle.
  • 'SaveImage' is meant for store train results and 'PredictImage' is meant for store test results.
  • 'params' is meant for store model.

Quick Up

Run train.py

Change DataSet

  • Delte all images in data dir and its subdir.

  • Install dataset from kaggle or anything you like(PS. Corresponding masks must have a _mask suffix) into 'Source' dir

  • Run data.py

    python3 data.py
    

    Remember change the path. After this, you will get images and masks in imgs dir and masks dir.

  • Run train.py

    python3 train.py
    

    Remember change the path. And you can see the results in 'SaveImage' dir and 'PredictImage' dir.

Results

Segment Image

Pre-trained model

https://drive.google.com/file/d/1yyrITv7BQf9kDnP__g6Qa3_wUPD1c_i_/view?usp=sharing

Owner
PinkR1ver
Artist, go with the flow, stay up late
PinkR1ver
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022