Structural basis for solubility in protein expression systems

Overview

Structural basis for solubility in protein expression systems

Twitter Follow GitHub repo size

Large-scale protein production for biotechnology and biopharmaceutical applications rely on high protein solubility in expression systems. Solubility has been measured for a significant fraction of E. coli and S. cerevisiae proteomes and these datasets are routinely used to train predictors of protein solubility in different organisms. Thanks to continued advances in experimental structure-determination and modelling, many of these solubility measurements can now be paired with accurate structural models.

The challenge is mentored by Christopher Ing and Mark Fingerhuth.

Aim of the challenge

It is the objective of this project to use our provided dataset of protein structure and solubility value pairs in order to produce a solubility predictor with comparable accuracy to sequence-based predictors reported in the literature. The provided dataset to be used in this project is created by following the dataset curation procedure described in the SOLart paper, and this hackathon project has a similar aim to this manuscript.

The dataset

The process of generating the dataset is described in the SOLArt manuscript. At a high level, all experimentally tested E. coli and S. cerevisiae proteins were matched through Uniprot IDs to known crystallographic structures or high sequence similarity homology models. After balancing the fold types using CATH, a dataset containing a balanced spread of solubility values was produced. The resulting proteins for the training and testing of these models were prepared and disclosed in the supplemental material of this paper as a list of (Uniprot,PDB,Chain,Solubility) pairs. The PDB files were not included in this work so we had to re-extract them from SWISS-MODEL. Whenever a crystallographic structure was present, it was used, assuming high coverage over the Uniprot sequence. In some cases, the original PDB templates used within the original SOLArt paper had been superceded by improved templates, and we opted to take the highest resolution, highest sequence identity, models in our updated dataset. We stripped away all irrelevant chains and heteroatoms.

If issues are identified with individual structures, please refer to the Uniprot ID and manually investigate the best template. In some cases, we needed to improve structure correctness by modelling missing atoms/residues inside the Chemical Computing Group software MOE on a case-by-case basis.

The dataset can be found in the data/ subdirectory - it is already divided into training/ and test/ data. The training/ data comes with solubility_values.csv and solublity_values.yaml (same content just different format) which both contain the solubility target values for all the PDB files provided in that directory. Note that each PDB file is named after the Uniprot identifier of the respective protein and the protein column in the solubility_values.csv also contains the Uniprot identifiers.

The test/ dataset consists of three different subdirectories (protein structures derived from different organisms and with different approaches) and you should NOT use them for any training. Only the yeast_crystal_structs/ directory contains solubility_values.csv and solublity_values.yaml (same content just different format) files which you can use for some local testing & validation. In order to find out your performance on the entire test dataset you need to use the automated benchmarking system (see below).

Example output

Your code should output a file called predictions.csv in the following format:

protein,solubility
P69829,83
P31133,62

whereby the protein column contains the Uniprot ID (corresponds to the filename of the PDB files) and the solubility column contains the predicted solubility value (can be int or float).

Note, that there are three (!) test subsets but you are expected to submit all the predictions in one file (not three) for the benchmarking system to work.

Automated benchmarking system

The continuous integration script in .github/workflows/ci.yml will automatically build the Dockerfile on every commit to the main branch. This docker image will be published as your hackathon submission to https://biolib.com//. For this to work, make sure you set the BIOLIB_TOKEN and BIOLIB_PROJECT_URI accordingly as repository secrets.

To read more about the benchmarking system click here.

Say thanks

Give this repo a star: GitHub Repo stars

Star the ProteinQure org on Github: GitHub Org's stars

Owner
ProteinQure
ProteinQure
Find the remote website version based on a git repository

versionshaker Versionshaker is a tool to find a remote website version based on a git repository This tool will help you to find the website version o

Orange Cyberdefense 110 Oct 23, 2022
Example applications, dashboards, scripts, notebooks, and other utilities built using Polygon.io

Polygon.io Examples Example applications, dashboards, scripts, notebooks, and other utilities built using Polygon.io. Examples Preview Name Type Langu

Tim Paine 4 Jun 01, 2022
A bot to view Dilbert comics directly from Discord and get updates of the comics automatically.

A bot to view Dilbert comics directly from Discord and get updates of the comics automatically

Raghav Sharma 3 Nov 30, 2022
HogwartsRegister - A Hogwarts Register With Python

A Hogwarts Register Installation download code git clone https://github.com/haor

0 Feb 12, 2022
Intelligent Systems Project In Python

Intelligent Systems Project In Python

RLLAB 3 May 16, 2022
Graphene Metanode is a locally hosted node for one account and several trading pairs, which uses minimal RAM resources.

Graphene Metanode is a locally hosted node for one account and several trading pairs, which uses minimal RAM resources. It provides the necessary user stream data and order book data for trading in a

litepresence 5 May 08, 2022
A Python application that helps users determine their calorie intake, and automatically generates customized weekly meal and workout plans based on metrics computed using their physical parameters

A Python application that helps users determine their calorie intake, and automatically generates customized weekly meal and workout plans based on metrics computed using their physical parameters

Anam Iqbal 1 Jan 13, 2022
A common, beautiful interface to tabular data, no matter the format

rows No matter in which format your tabular data is: rows will import it, automatically detect types and give you high-level Python objects so you can

Álvaro Justen 834 Jan 03, 2023
A framework to create reusable Dash layout.

dash_component_template A framework to create reusable Dash layout.

The TolTEC Project 4 Aug 04, 2022
Agora-token-helper - Some help tools for AgoraToken

Agora Token Helper Support AgoraToken version 001 - 006. But for security reason

Recreating my first CRUD in python, but now more professional

Recreating my first CRUD in python, but now more professional

Ricardo Deo Sipione Augusto 2 Nov 27, 2021
Choice Coin 633 Dec 23, 2022
TB Set color display - Add-on for Blender to set multiple objects and material Display Color at once.

TB_Set_color_display Add-on for Blender with operations to transfer name between object, data, materials and action names Set groups of object's or ma

1 Jun 01, 2022
Msgpack serialization/deserialization library for Python, written in Rust using PyO3 and rust-msgpack. Reboot of orjson. msgpack.org[Python]

ormsgpack ormsgpack is a fast msgpack library for Python. It is a fork/reboot of orjson It serializes faster than msgpack-python and deserializes a bi

Aviram Hassan 139 Dec 30, 2022
Python AVL Protocols Server for Codec 8 and Codec 8 Extended Protocols

pycodecs Package provides python AVL Protocols Server for Codec 8 and Codec 8 Extended Protocols This package will parse the AVL Data and log it in hu

Vardharajulu K N 2 Jun 21, 2022
Trashselected - Plugin for fman.io to move files that has been selected in fman to trash

TrashSelected Plugin for fman.io to move files that has been selected in fman to

1 Feb 04, 2022
API development made easy: a smart Python 3 API framework

appkernel - API development made easy What is Appkernel? A super-easy to use API framework, enabling API creation from zero to production within minut

156 Sep 28, 2022
Never see escaped bytes in output.

Uniout It makes Python print the object representation in readable chars instead of the escaped string. Example from pprint import pprint lang

Mosky Liu 156 Oct 21, 2022
Zapiski za ure o C++-u

cpp-notes Zapiski o C++-u. Objavljena verzija je na https://e6.ijs.si/~jslak/c++/ Generating the notes The setup assumes you are working in a Linux en

Jure Slak 1 Jan 05, 2022
Flames Calculater App used to calculate flames status between two names created using python's Flask web framework.

Flames Finder Web App Flames Calculater App used to calculate flames status between two names created using python's Flask web framework. First, App g

Siva Prakash 4 Jan 02, 2022