Deep LearningImage Captcha 2

Overview

滑动验证码深度学习识别

本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。

只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例:

克隆项目

运行命令:

git clone https://github.com/Python3WebSpider/DeepLearningSlideCaptcha.git

数据准备

使用 LabelImg 工具标注自行标注一批数据,大约 200 张以上即可训练出不错的效果。

LabelImg:https://github.com/tzutalin/labelImg

标注要求:

  • 圈出验证码目标滑块区域的完整完整矩形,无需标注源滑块。
  • 目标矩形命名为 target 这个类别。
  • 建议使用 LabelImg 的快捷键提高标注效率。

环境准备

建议在 GPU 环境和虚拟 Python 环境下执行如下命令:

pip3 install -r requirements.txt

预训练模型下载

YOLOV3 的训练要加载预训练模型才能有不错的训练效果,预训练模型下载:

bash prepare.sh

下载完成之后会在 weights 文件夹下出现模型权重文件,供训练使用。

训练

本项目已经提供了标注好的数据集,在 data/captcha,可以直接使用。

如果要训练自己的数据,数据格式准备见:https://github.com/eriklindernoren/PyTorch-YOLOv3#train-on-custom-dataset

当前数据训练脚本:

bash train.sh

实测 P100 训练时长约 15 秒一个 epoch,大约几分钟即可训练出较好效果。

测试

训练完毕之后会在 checkpoints 文件夹生成 pth 文件,可直接使用模型来预测生成标注结果。

此时 checkpoints 文件夹会生成训练好的 pth 文件。

当前数据测试脚本:

sh detect.sh

该脚本会读取 captcha 下的 test 文件夹所有图片,并将处理后的结果输出到 test 文件夹。

运行结果样例:

Performing object detection:
        + Batch 0, Inference Time: 0:00:00.044223
        + Batch 1, Inference Time: 0:00:00.028566
        + Batch 2, Inference Time: 0:00:00.029764
        + Batch 3, Inference Time: 0:00:00.032430
        + Batch 4, Inference Time: 0:00:00.033373
        + Batch 5, Inference Time: 0:00:00.027861
        + Batch 6, Inference Time: 0:00:00.031444
        + Batch 7, Inference Time: 0:00:00.032110
        + Batch 8, Inference Time: 0:00:00.029131

Saving images:
(0) Image: 'data/captcha/test/captcha_4497.png'
        + Label: target, Conf: 0.99999
(1) Image: 'data/captcha/test/captcha_4498.png'
        + Label: target, Conf: 0.99999
(2) Image: 'data/captcha/test/captcha_4499.png'
        + Label: target, Conf: 0.99997
(3) Image: 'data/captcha/test/captcha_4500.png'
        + Label: target, Conf: 0.99999
(4) Image: 'data/captcha/test/captcha_4501.png'
        + Label: target, Conf: 0.99997
(5) Image: 'data/captcha/test/captcha_4502.png'
        + Label: target, Conf: 0.99999
(6) Image: 'data/captcha/test/captcha_4503.png'
        + Label: target, Conf: 0.99997
(7) Image: 'data/captcha/test/captcha_4504.png'
        + Label: target, Conf: 0.99998
(8) Image: 'data/captcha/test/captcha_4505.png'
        + Label: target, Conf: 0.99998

样例结果:

协议

本项目基于开源 GNU 协议 ,另外本项目不提供任何有关滑动轨迹相关模拟和 JavaScript 逆向分析方案。

本项目仅供学习交流使用,请勿用于非法用途,本人不承担任何法律责任。

如有侵权请联系个人删除,谢谢。

Owner
Python3WebSpider
Python3WebSpider
基于openpose和图像分类的手语识别项目

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

20 Dec 15, 2022
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022
かの有名なあの東方二次創作ソング、「bad apple!」のMVをPythonでやってみたって話

bad apple!! 内容 このプログラムは、bad apple!(feat. nomico)のPVをPythonを用いて再現しよう!という内容です。 実はYoutube並びにGithub上に似たようなプログラムがあったしなんならそっちの方が結構良かったりするんですが、一応公開しますw 使い方 こ

赤紫 8 Jan 05, 2023
一键翻译各类图片内文字

一键翻译各类图片内文字 针对群内、各个图站上大量不太可能会有人去翻译的图片设计,让我这种日语小白能够勉强看懂图片 主要支持日语,不过也能识别汉语和小写英文 支持简单的涂白和嵌字

574 Dec 28, 2022
Extract tables from scanned image PDFs using Optical Character Recognition.

ocr-table This project aims to extract tables from scanned image PDFs using Optical Character Recognition. Install Requirements Tesseract OCR sudo apt

Abhijeet Singh 209 Dec 06, 2022
Optical character recognition for Japanese text, with the main focus being Japanese manga

Manga OCR Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Tran

Maciej Budyś 327 Jan 01, 2023
Repository for playing the computer vision apps: People analytics on Raspberry Pi.

play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA

eMHa 1 Sep 23, 2021
Semantic-based Patch Detection for Binary Programs

PMatch Semantic-based Patch Detection for Binary Programs Requirement tensorflow-gpu 1.13.1 numpy 1.16.2 scikit-learn 0.20.3 ssdeep 3.4 Usage tar -xvz

Mr.Curiosity 3 Sep 02, 2022
Repository collecting all the submodules for the new PyTorch-based OCR System.

OCRopus3 is being replaced by OCRopus4, which is a rewrite using PyTorch 1.7; release should be soonish. Please check github.com/tmbdev/ocropus for up

NVIDIA Research Projects 138 Dec 09, 2022
Some Boring Research About Products Recognition 、Duplicate Img Detection、Img Stitch、OCR

Products Recognition 介绍 商品识别,围绕在复杂的商场零售场景中,识别出货架图像中的商品信息。主要组成部分: 重复图像检测。【更新进度 4/10】 图像拼接。【更新进度 0/10】 目标检测。【更新进度 0/10】 商品识别。【更新进度 1/10】 OCR。【更新进度 1/10】

zhenjieWang 18 Jan 27, 2022
ERQA - Edge Restoration Quality Assessment

ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.

MSU Video Group 27 Dec 17, 2022
Erosion and dialation using structure element in OpenCV python

Erosion and dialation using structure element in OpenCV python

Tamzid hasan 2 Nov 11, 2021
A tensorflow implementation of EAST text detector

EAST: An Efficient and Accurate Scene Text Detector Introduction This is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text

2.9k Jan 02, 2023
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Image processing is one of the most common term in computer vision

Image processing is one of the most common term in computer vision. Computer vision is the process by which computers can understand images and videos, and how they are stored, manipulated, and retri

Happy N. Monday 3 Feb 15, 2022
Satoshi is a discord bot template in python using discord.py that allow you to track some live crypto prices with your own discord bot.

Satoshi ~ DiscordCryptoBot Satoshi is a simple python discord bot using discord.py that allow you to track your favorites cryptos prices with your own

Théo 2 Sep 15, 2022
PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector

Description This is a PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector. Only RBOX part is implemented. Using dice loss

365 Dec 20, 2022
Creating of virtual elements of the graphical interface using opencv and mediapipe.

Virtual GUI Creating of virtual elements of the graphical interface using opencv and mediapipe. Element GUI Output Description Button By default the b

Aleksei 4 Jun 16, 2022