Dogs classification with Deep Metric Learning using some popular losses

Overview

Tsinghua Dogs classification with
Deep Metric Learning

1. Introduction

Tsinghua Dogs dataset

Tsinghua Dogs is a fine-grained classification dataset for dogs, over 65% of whose images are collected from people's real life. Each dog breed in the dataset contains at least 200 images and a maximum of 7,449 images. For more info, see dataset's homepage.

Following is the brief information about the dataset:

  • Number of categories: 130
  • Number of training images: 65228
  • Number of validating images: 5200

Variation in Tsinghua Dogs dataset. (a) Great Danes exhibit large variations in appearance, while (b) Norwich terriers and (c) Australian terriers are quite similar to each other. (Source)

Deep metric learning

Deep metric learning (DML) aims to measure the similarity among samples by training a deep neural network and a distance metric such as Euclidean distance or Cosine distance. For fine-grained data, in which the intra-class variances are larger than inter-class variances, DML proves to be useful in classification tasks.

Goal

In this projects, I use deep metric learning to classify dog images in Tsinghua Dogs dataset. Those loss functions are implemented:

  1. Triplet loss
  2. Proxy-NCA loss
  3. Proxy-anchor loss: In progress
  4. Soft-triple loss: In progress

I also evaluate models' performance on some common metrics:

  1. Precision at k ([email protected])
  2. Mean average precision (MAP)
  3. Top-k accuracy
  4. Normalized mutual information (NMI)


2. Benchmarks

  • Architecture: Resnet-50 for feature extractions.
  • Embedding size: 128.
  • Batch size: 48.
  • Number of epochs: 100.
  • Online hard negatives mining.
  • Augmentations:
    • Random horizontal flip.
    • Random brightness, contrast and saturation.
    • Random affine with rotation, scale and translation.
MAP [email protected] [email protected] [email protected] Top-5 NMI Download
Triplet loss 73.85% 74.66% 73.90 73.00% 93.76% 0.82
Proxy-NCA loss 89.10% 90.26% 89.28% 87.76% 99.39% 0.98
Proxy-anchor loss
Soft-triple loss


3. Visualization

Proxy-NCA loss

Confusion matrix on validation set

T-SNE on validation set

Similarity matrix of some images in validation set

  • Each cell represent the L2 distance between 2 images.
  • The closer distance to 0 (blue), the more similar.
  • The larger distance (green), the more dissimilar.

Triplet loss

Confusion matrix on validation set

T-SNE on validation set

Similarity matrix of some images in validation set

  • Each cell represent the L2 distance between 2 images.
  • The closer distance to 0 (blue), the more similar.
  • The larger distance (green), the more dissimilar.



4. Train

4.1 Install dependencies

# Create conda environment
conda create --name dml python=3.7 pip
conda activate dml

# Install pytorch and torchvision
conda install -n dml pytorch torchvision cudatoolkit=10.2 -c pytorch

# Install faiss for indexing and calulcating accuracy
# https://github.com/facebookresearch/faiss
conda install -n dml faiss-gpu cudatoolkit=10.2 -c pytorch

# Install other dependencies
pip install opencv-python tensorboard torch-summary torch_optimizer scikit-learn matplotlib seaborn requests ipdb flake8 pyyaml

4.2 Prepare Tsinghua Dogs dataset

PYTHONPATH=./ python src/scripts/prepare_TsinghuaDogs.py --output_dir data/

Directory data should be like this:

data/
└── TsinghuaDogs
    ├── High-Annotations
    ├── high-resolution
    ├── TrainAndValList
    ├── train
    │   ├── 561-n000127-miniature_pinscher
    │   │   ├── n107028.jpg
    │   │   ├── n107031.jpg
    │   │   ├── ...
    │   │   └── n107218.jp
    │   ├── ...
    │   ├── 806-n000129-papillon
    │   │   ├── n107440.jpg
    │   │   ├── n107451.jpg
    │   │   ├── ...
    │   │   └── n108042.jpg
    └── val
        ├── 561-n000127-miniature_pinscher
        │   ├── n161176.jpg
        │   ├── n161177.jpg
        │   ├── ...
        │   └── n161702.jpe
        ├── ...
        └── 806-n000129-papillon
            ├── n169982.jpg
            ├── n170022.jpg
            ├── ...
            └── n170736.jpeg

4.3 Train model

  • Train with proxy-nca loss
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=./ python src/main.py --train_dir data/TsinghuaDogs/train --test_dir data/TsinghuaDogs/val --loss proxy_nca --config src/configs/proxy_nca_loss.yaml --checkpoint_root_dir src/checkpoints/proxynca-resnet50
  • Train with triplet loss
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=./ python src/main.py --train_dir data/TsinghuaDogs/train --test_dir data/TsinghuaDogs/val --loss tripletloss --config src/configs/triplet_loss.yaml --checkpoint_root_dir src/checkpoints/tripletloss-resnet50

Run PYTHONPATH=./ python src/main.py --help for more detail about arguments.

If you want to train on 2 gpus, replace CUDA_VISIBLE_DEVICES=0 with CUDA_VISIBLE_DEVICES=0,1 and so on.

If you encounter out of memory issues, try reducing classes_per_batch and samples_per_class in src/configs/triplet_loss.yaml or batch_size in src/configs/your-loss.yaml



5. Evaluate

To evaluate, directory data should be structured like this:

data/
└── TsinghuaDogs
    ├── train
    │   ├── 561-n000127-miniature_pinscher
    │   │   ├── n107028.jpg
    │   │   ├── n107031.jpg
    │   │   ├── ...
    │   │   └── n107218.jp
    │   ├── ...
    │   ├── 806-n000129-papillon
    │   │   ├── n107440.jpg
    │   │   ├── n107451.jpg
    │   │   ├── ...
    │   │   └── n108042.jpg
    └── val
        ├── 561-n000127-miniature_pinscher
        │   ├── n161176.jpg
        │   ├── n161177.jpg
        │   ├── ...
        │   └── n161702.jpe
        ├── ...
        └── 806-n000129-papillon
            ├── n169982.jpg
            ├── n170022.jpg
            ├── ...
            └── n170736.jpeg

Plot confusion matrix

PYTHONPATH=./ python src/scripts/visualize_confusion_matrix.py --test_images_dir data/TshinghuaDogs/val/ --reference_images_dir data/TshinghuaDogs/train -c src/checkpoints/proxynca-resnet50.pth

Plot T-SNE

PYTHONPATH=./ python src/scripts/visualize_tsne.py --images_dir data/TshinghuaDogs/val/ -c src/checkpoints/proxynca-resnet50.pth

Plot similarity matrix

PYTHONPATH=./ python src/scripts/visualize_similarity.py  --images_dir data/TshinghuaDogs/val/ -c src/checkpoints/proxynca-resnet50.pth


6. Developement

.
├── __init__.py
├── README.md
├── src
│   ├── main.py  # Entry point for training.
│   ├── checkpoints  # Directory to save model's weights while training
│   ├── configs  # Configurations for each loss function
│   │   ├── proxy_nca_loss.yaml
│   │   └── triplet_loss.yaml
│   ├── dataset.py
│   ├── evaluate.py  # Calculate mean average precision, accuracy and NMI score
│   ├── __init__.py
│   ├── logs
│   ├── losses
│   │   ├── __init__.py
│   │   ├── proxy_nca_loss.py
│   │   └── triplet_margin_loss.py
│   ├── models  # Feature extraction models
│   │   ├── __init__.py
│   │   └── resnet.py
│   ├── samplers
│   │   ├── __init__.py
│   │   └── pk_sampler.py  # Sample triplets in each batch for triplet loss
│   ├── scripts
│   │   ├── __init__.py
│   │   ├── prepare_TsinghuaDogs.py  # download and prepare dataset for training and validating
│   │   ├── visualize_confusion_matrix.py
│   │   ├── visualize_similarity.py
│   │   └── visualize_tsne.py
│   ├── trainer.py  # Helper functions for training
│   └── utils.py  # Some utility functions
└── static
    ├── proxynca-resnet50
    │   ├── confusion_matrix.jpg
    │   ├── similarity.jpg
    │   ├── tsne_images.jpg
    │   └── tsne_points.jpg
    └── tripletloss-resnet50
        ├── confusion_matrix.jpg
        ├── similarity.jpg
        ├── tsne_images.jpg
        └── tsne_points.jpg

7. Acknowledgement

@article{Zou2020ThuDogs,
    title={A new dataset of dog breed images and a benchmark for fine-grained classification},
    author={Zou, Ding-Nan and Zhang, Song-Hai and Mu, Tai-Jiang and Zhang, Min},
    journal={Computational Visual Media},
    year={2020},
    url={https://doi.org/10.1007/s41095-020-0184-6}
}
Owner
QuocThangNguyen
Computer Vision Researcher
QuocThangNguyen
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023