An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden.

Overview

sweden-rent-dashboard

An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden.

The dashboard/web-app generated from this project can be viewed by clicking here The dashboard was built to be highly interactive so please do feel free to interact with the figures, dialog buttons, sliders and text inputs. (Unfortunately, the web-app does not render well on mobile devices.)

Preview of the Dashboard Overview Page

SwedenDashBoard

Code and Resources Used

  • Python Version: 3.8
  • Packages Used: pandas, numpy, json, dash, plotly, BeautifulSoup, requests, urllib.request (Those that are required for hosting the web-app can be installed using: pip install -r requirements.txt after cloning the repo).
  • Statistical Data: Downloaded from Statistics Sweden. The median values were used instead of the means as the underlying distribution of each data set is unavailable.
  • Web scraping: Performed on various sites including wiki, Information Sverige and Open Street Map.
  • GeoJSON (Map) Data: Obtained from Open Street Map using their API. See section below for further details.

Repository Layout

Main folder

  • app.py: Used to generate the Plotly/Dash web-app. In order to run this you will need to have run all the below scripts in advance or use the files provided in the "assets" folder in this repo.

  • "get_kommun_county_info.py": This script web scrapes from both wiki and Information Sverige to:

    • Generate a dictionary that states what county ("län" in Swedish) each municipality ("kommun" in Swedish) belongs to.
    • Obtain a short bit of introductory text about each municipality.
    • Store the web address for each municipality's page on Information Sverige.
  • "prepare_rent_data.py": Takes the 4 Statistics Sweden excel files (these can be found in the "stats" folder) and cleans/reformats them. Outputs are saved as ".csv" files in the "assets" folder and are loaded into the web-app.

  • "get_geojson_data.py": This script first web scrapes relation numbers (like an i.d. number for a map file) for all counties ("län" in Swedish) and municipalities ("kommuner" in Swedish) in Sweden from Open Street Map. The relation numbers are then used to download GeoJSON files from the OSM database and merged to create maps of Sweden (with borders marked at both the county and municipality levels). The original map files generated from this process ("counties_map.json" and "kommuner_map.json") and they were then "simplified" (resolution decreased) using mapshaper to improve page loading times on the web-app.

Folder: stats

The four ".xlsx" files were obtained directly from Statistics Sweden and left unaltered. The file "sources.txt" provides additional information about how exactly these files were obtained.

Folder: assets

These are the resources read in and used by the Plotly/Dash web-app. These were all generated in advance using the scripts described in the main folder.

Issues/Comments/Questions

Please feel free to open an issue or pull request if you have any issues/comments/questions or notice something that could be improved.

Owner
Rory Crean
Postdoctoral Researcher in Computational Chemistry
Rory Crean
Painlessly create beautiful matplotlib plots.

Announcement Thank you to everyone who has used prettyplotlib and made it what it is today! Unfortunately, I no longer have the bandwidth to maintain

Olga Botvinnik 1.6k Jan 06, 2023
Data visualization using matplotlib

Data visualization using matplotlib project instructions Top 5 Most Common Coffee Origins In this visualization I used data from Ankur Chavda on Kaggl

13 Oct 27, 2021
Visualize the bitcoin blockchain from your local node

Project Overview A new feature in Bitcoin Core 0.20 allows users to dump the state of the blockchain (the UTXO set) using the command dumptxoutset. I'

18 Sep 11, 2022
Python package for the analysis and visualisation of finite-difference fields.

discretisedfield Marijan Beg1,2, Martin Lang2, Samuel Holt3, Ryan A. Pepper4, Hans Fangohr2,5,6 1 Department of Earth Science and Engineering, Imperia

ubermag 12 Dec 14, 2022
GDSHelpers is an open-source package for automatized pattern generation for nano-structuring.

GDSHelpers GDSHelpers in an open-source package for automatized pattern generation for nano-structuring. It allows exporting the pattern in the GDSII-

Helge Gehring 76 Dec 16, 2022
Create animated and pretty Pandas Dataframe or Pandas Series

Rich DataFrame Create animated and pretty Pandas Dataframe or Pandas Series, as shown below: Installation pip install rich-dataframe Usage Minimal exa

Khuyen Tran 92 Dec 26, 2022
A Python library for plotting hockey rinks with Matplotlib.

Hockey Rink A Python library for plotting hockey rinks with Matplotlib. Installation pip install hockey_rink Current Rinks The following shows the cus

24 Jan 02, 2023
Define fortify and autoplot functions to allow ggplot2 to handle some popular R packages.

ggfortify This package offers fortify and autoplot functions to allow automatic ggplot2 to visualize statistical result of popular R packages. Check o

Sinhrks 504 Dec 23, 2022
Visualization of numerical optimization algorithms

Visualization of numerical optimization algorithms

Zhengxia Zou 46 Dec 01, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Jan 04, 2023
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata

ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata (Name, company, port, user manua

QeeqBox 2 Dec 13, 2021
Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object. oneFace is an easy way t

NaNg 31 Oct 21, 2022
Practical-statistics-for-data-scientists - Code repository for O'Reilly book

Code repository Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python by Peter Bruce, Andrew Bruce, and Peter Gedeck Pub

1.7k Jan 04, 2023
JupyterHub extension for ContainDS Dashboards

ContainDS Dashboards for JupyterHub A Dashboard publishing solution for Data Science teams to share results with decision makers. Run a private on-pre

Ideonate 179 Nov 29, 2022
Learning Convolutional Neural Networks with Interactive Visualization.

CNN Explainer An interactive visualization system designed to help non-experts learn about Convolutional Neural Networks (CNNs) For more information,

Polo Club of Data Science 6.3k Jan 01, 2023
Type-safe YAML parser and validator.

StrictYAML StrictYAML is a type-safe YAML parser that parses and validates a restricted subset of the YAML specification. Priorities: Beautiful API Re

Colm O'Connor 1.2k Jan 04, 2023
Python package that generates hardware pinout diagrams as SVG images

PinOut A Python package that generates hardware pinout diagrams as SVG images. The package is designed to be quite flexible and works well for general

336 Dec 20, 2022
Monochromatic colorscheme for matplotlib with opinionated sensible default

Monochromatic colorscheme for matplotlib with opinionated sensible default If you need a simple monochromatic colorscheme for your matplotlib figures,

Aria Ghora Prabono 2 May 06, 2022
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

AutoViz Automatically Visualize any dataset, any size with a single line of code. AutoViz performs automatic visualization of any dataset with one lin

AutoViz and Auto_ViML 1k Jan 02, 2023