This repository collects 100 papers related to negative sampling methods.

Overview

Negative-Sampling-Paper

This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommendation Systems (RS), Computer Vision (CV),Natural Language Processing (NLP) and Contrastive Learning (CL).

Existing negative sampling methods can be roughly divided into five categories: Static Negative Sampling, Hard Negative Sampling, Adversarial Sampling, Graph-based Sampling and Additional data enhanced Sampling.

Category

Static Negative Sampling

  • BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI(2009) [RS] [PDF]

  • Real-Time Top-N Recommendation in Social Streams. RecSys(2012) [RS] [PDF]

  • Distributed Representations of Words and Phrases and their Compositionality. NIPS(2013) [NLP] [PDF]

  • word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method. arXiv(2014) [NLP] [PDF]

  • Deepwalk: Online learning of social representations. KDD(2014) [GRL] [PDF]

  • LINE: Large-scale Information Network Embedding. WWW(2015) [GRL] [PDF]

  • Context- and Content-aware Embeddings for Query Rewriting in Sponsored Search. SIGIR(2015) [NLP] [PDF]

  • node2vec: Scalable Feature Learning for Networks. KDD(2016) [NLP] [PDF]

  • Fast Matrix Factorization for Online Recommendation with Implicit Feedback. SIGIR(2016) [RS] [PDF]

  • Word2vec applied to Recommendation: Hyperparameters Matter. RecSys(2018) [RS] [PDF]

  • General Knowledge Embedded Image Representation Learning. TMM(2018) [CV] [PDF]

  • Alleviating Cold-Start Problems in Recommendation through Pseudo-Labelling over Knowledge Graph. WSDM(2021) [RS] [PDF]

Hard Negative Sampling

  • Example-based learning for view-based human face detection. TPAMI(1998) [CV] [PDF]

  • Adaptive Importance Sampling to Accelerate Training of a Neural Probabilistic Language Model. T-NN(2008) [NLP] [PDF]

  • Optimizing Top-N Collaborative Filtering via Dynamic Negative Item Sampling. SIGIR(2013) [RS] [PDF]

  • Bootstrapping Visual Categorization With Relevant Negatives. TMM(2013) [CV] [PDF]

  • Improving Pairwise Learning for Item Recommendation from Implicit Feedback. WSDM(2014) [RS] [PDF]

  • Improving Latent Factor Models via Personalized Feature Projection for One Class Recommendation. CIKM(2015) [RS] [PDF]

  • Noise-Contrastive Estimation for Answer Selection with Deep Neural Networks. CIKM(2016) [NLP] [PDF]

  • RankMBPR: Rank-aware Mutual Bayesian Personalized Ranking for Item Recommendation. WAIM(2016) [RS] [PDF]

  • Training Region-Based Object Detectors With Online Hard Example Mining. CVPR(2016) [CV] [PDF]

  • Hard Negative Mining for Metric Learning Based Zero-Shot Classification. ECCV(2016) [ML] [PDF]

  • Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining. Sensors(2017) [CV] [PDF]

  • WalkRanker: A Unified Pairwise Ranking Model with Multiple Relations for Item Recommendation. AAAI(2018) [RS] [PDF]

  • Bootstrapping Entity Alignment with Knowledge Graph Embedding. IJCAI(2018) [KGE] [PDF]

  • Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors. CVPR(2018) [CV] [PDF]

  • NSCaching: Simple and Efficient Negative Sampling for Knowledge Graph Embedding. ICDE(2019) [KGE] [PDF]

  • Meta-Transfer Learning for Few-Shot Learning. CVPR(2019) [CV] [PDF]

  • ULDor: A Universal Lesion Detector for CT Scans with Pseudo Masks and Hard Negative Example Mining. ISBI(2019) [CV] [PDF]

  • Distributed representation learning via node2vec for implicit feedback recommendation. NCA(2020) [NLP] [PDF]

  • Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering. arXiv(2020) [RS] [PDF]

  • Hard Negative Mixing for Contrastive Learning. arXiv(2020) [CL] [PDF]

  • Bundle Recommendation with Graph Convolutional Networks. SIGIR(2020) [RS] [PDF]

  • Supervised Contrastive Learning. NIPS(2020) [CL] [PDF]

  • Curriculum Meta-Learning for Next POI Recommendation. KDD(2021) [RS] [PDF]

  • Boosting the Speed of Entity Alignment 10×: Dual Attention Matching Network with Normalized Hard Sample Mining. WWW(2021) [KGE] [PDF]

  • Hard-Negatives or Non-Negatives? A Hard-Negative Selection Strategy for Cross-Modal Retrieval Using the Improved Marginal Ranking Loss. ICCV(2021) [CV] [PDF]

Adversarial Sampling

  • Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. NIPS(2015) [CV] [PDF]

  • IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models. SIGIR(2017) [IR] [PDF]

  • SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI(2017) [NLP] [PDF]

  • KBGAN: Adversarial Learning for Knowledge Graph Embeddings. NAACL(2018) [KGE] [PDF]

  • Neural Memory Streaming Recommender Networks with Adversarial Training. KDD(2018) [RS] [PDF]

  • GraphGAN: Graph Representation Learning with Generative Adversarial Nets. AAAI(2018) [GRL] [PDF]

  • CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks. CIKM(2018) [RS] [PDF]

  • Adversarial Contrastive Estimation. ACL(2018) [NLP] [PDF]

  • Incorporating GAN for Negative Sampling in Knowledge Representation Learning. AAAI(2018) [KGE] [PDF]

  • Exploring the potential of conditional adversarial networks for optical and SAR image matching. IEEE J-STARS(2018) [CV] [PDF]

  • Deep Adversarial Metric Learning. CVPR(2018) [CV] [PDF]

  • Adversarial Detection with Model Interpretation. KDD(2018) [ML] [PDF]

  • Adversarial Sampling and Training for Semi-Supervised Information Retrieval. WWW(2019) [IR] [PDF]

  • Deep Adversarial Social Recommendation. IJCAI(2019) [RS] [PDF]

  • Adversarial Learning on Heterogeneous Information Networks. KDD(2019) [HIN] [PDF]

  • Regularized Adversarial Sampling and Deep Time-aware Attention for Click-Through Rate Prediction. CIKM(2019) [RS] [PDF]

  • Adversarial Knowledge Representation Learning Without External Model. IEEE Access(2019) [KGE] [PDF]

  • Adversarial Binary Collaborative Filtering for Implicit Feedback. AAAI(2019) [RS] [PDF]

  • ProGAN: Network Embedding via Proximity Generative Adversarial Network. KDD(2019) [GRL] [PDF]

  • Generating Fluent Adversarial Examples for Natural Languages. ACL(2019) [NLP] [PDF]

  • IPGAN: Generating Informative Item Pairs by Adversarial Sampling. TNLLS(2020) [RS] [PDF]

  • Contrastive Learning with Adversarial Examples. arXiv(2020) [CL] [PDF]

  • PURE: Positive-Unlabeled Recommendation with Generative Adversarial Network. KDD(2021) [RS] [PDF]

  • Negative Sampling for Knowledge Graph Completion Based on Generative Adversarial Network. ICCCI(2021) [KGE] [PDF]

  • Synthesizing Adversarial Negative Responses for Robust Response Ranking and Evaluation. arXiv(2021) [NLP] [PDF]

  • Adversarial Feature Translation for Multi-domain Recommendation. KDD(2021) [RS] [PDF]

  • Adversarial training regularization for negative sampling based network embedding. Information Sciences(2021) [GRL] [PDF]

  • Adversarial Caching Training: Unsupervised Inductive Network Representation Learning on Large-Scale Graphs. TNNLS(2021) [GRL] [PDF]

  • A Robust and Generalized Framework for Adversarial Graph Embedding. arxiv(2021) [GRL] [PDF]

  • Instance-wise Hard Negative Example Generation for Contrastive Learning in Unpaired Image-to-Image Translation. ICCV(2021) [CV] [PDF]

Graph-based Sampling

  • ACRec: a co-authorship based random walk model for academic collaboration recommendation. WWW(2014) [RS] [PDF]

  • GNEG: Graph-Based Negative Sampling for word2vec. ACL(2018) [NLP] [PDF]

  • Graph Convolutional Neural Networks for Web-Scale Recommender Systems. KDD(2018) [RS] [PDF]

  • SamWalker: Social Recommendation with Informative Sampling Strategy. WWW(2019) [RS] [PDF]

  • Understanding Negative Sampling in Graph Representation Learning. KDD(2020) [GRL] [PDF]

  • Reinforced Negative Sampling over Knowledge Graph for Recommendation. WWW(2020) [RS] [PDF]

  • MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems. KDD(2021) [RS] [PDF]

  • SamWalker++: recommendation with informative sampling strategy. TKDE(2021) [RS] [PDF]

  • DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN. CIKM(2021) [RS] [PDF]

Additional data enhanced Sampling

  • Leveraging Social Connections to Improve Personalized Ranking for Collaborative Filtering. CIKM(2014) [RS] [PDF]

  • Social Recommendation with Strong and Weak Ties. CIKM(2016) [RS] [PDF]

  • Bayesian Personalized Ranking with Multi-Channel User Feedback. RecSys(2016) [RS] [PDF]

  • Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation. ICTAI(2017) [RS] [PDF]

  • A Personalised Ranking Framework with Multiple Sampling Criteria for Venue Recommendation. CIKM(2017) [RS] [PDF]

  • An Improved Sampling for Bayesian Personalized Ranking by Leveraging View Data. WWW(2018) [RS] [PDF]

  • Reinforced Negative Sampling for Recommendation with Exposure Data. IJCAI(2019) [RS] [PDF]

  • Geo-ALM: POI Recommendation by Fusing Geographical Information and Adversarial Learning Mechanism. IJCAI(2019) [RS] [PDF]

  • Bayesian Deep Learning with Trust and Distrust in Recommendation Systems. WI(2019) [RS] [PDF]

  • Socially-Aware Self-Supervised Tri-Training for Recommendation. arXiv(2021) [RS] [PDF]

  • DGCN: Diversified Recommendation with Graph Convolutional Networks. WWW(2021) [RS] [PDF]

Future Outlook

False Negative Problem

  • Incremental False Negative Detection for Contrastive Learning. arXiv(2021) [CL] [PDF]

  • Graph Debiased Contrastive Learning with Joint Representation Clustering. IJCAI(2021) [GRL & CL] [PDF]

  • Relation-aware Graph Attention Model With Adaptive Self-adversarial Training. AAAI(2021) [KGE] [PDF]

Curriculum Learning

  • On The Power of Curriculum Learning in Training Deep Networks. ICML(2016) [CV] [PDF]

  • Graph Representation with Curriculum Contrastive Learning. IJCAI(2021) [GRL & CL] [PDF]

Negative Sampling Ratio

  • Are all negatives created equal in contrastive instance discrimination. arXiv(2020) [CL] [PDF]

  • SimpleX: A Simple and Strong Baseline for Collaborative Filtering. CIKM(2021) [RS] [PDF]

  • Rethinking InfoNCE: How Many Negative Samples Do You Need. arXiv(2021) [CL] [PDF]

Debiased Sampling

  • Debiased Contrastive Learning. NIPS(2020) [CL] [PDF]

  • Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems. KDD(2021) [RS] [PDF]

Non-Sampling

  • Beyond Hard Negative Mining: Efficient Detector Learning via Block-Circulant Decomposition. ICCV(2013) [CV] [PDF]

  • Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation. AAAI(2020) [RS] [PDF]

  • Efficient Non-Sampling Knowledge Graph Embedding. WWW(2021) [KGE] [PDF]

Owner
RUCAIBox
An enthusiastic group that aims to create beautiful things with AI
RUCAIBox
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022