Lux AI environment interface for RLlib multi-agents

Overview

Lux AI interface to RLlib MultiAgentsEnv

For Lux AI Season 1 Kaggle competition.

Please let me know if you use this, I'd like to see what people build with it!

TL;DR

The only thing you need to customise is the interface class (inheriting from multilux.lux_interface.LuxDefaultInterface). The interface needs to:

  • Implement four "toward-agent" methods:
    • observation(joint_observation, actors)
    • reward(joint_reward, actors)
    • done(joint_done, actors)
    • info(joint_info, actors)
  • Implement one "toward-environment" method:
    • actions(action_dict)
  • Manage its own actor id creation, assignment, etc. (hint citytiles don't have ids in the game engine)

Implementation diagram

Diagram

Example for training

import numpy as np

# (1) Define your custom interface for (obs, reward, done, info, actions) ---
from multilux.lux_interface import LuxDefaultInterface

class MyInterface(LuxDefaultInterface):
    def observation(self, joint_obs, actors) -> dict:
        return {a: np.array([0, 0]) for a in actors}

    def reward(self, joint_reward, actors) -> dict:
        return {a: 0 for a in actors}

    def done(self, joint_done, actors) -> dict:
        return {a: True for a in actors}

    def info(self, joint_info, actors) -> dict:
        return {a: {} for a in actors}

    def actions(self, action_dict) -> list:
        return []
    
# (2) Register environment --------------------------------------------------
from ray.tune.registry import register_env
from multilux.lux_env import LuxEnv


def env_creator(env_config):
    
    configuration = env_config.get(configuration, {})
    debug = env_config.get(debug, False)
    interface = env_config.get(interface, MyInterface)
    agents = env_config.get(agents, (None, "simple_agent"))
    
    return LuxEnv(configuration, debug,
                     interface=interface,
                     agents=agents,
                     train=True)

register_env("multilux", env_creator)

# (3) Define observation and action spaces for each actor type --------------
from gym import spaces

u_obs_space = spaces.Box(low=0, high=1, shape=(2,), dtype=np.float16)
u_act_space = spaces.Discrete(2)
ct_obs_space = spaces.Box(low=0, high=1, shape=(2,), dtype=np.float16)
ct_act_space = spaces.Discrete(2)

# (4) Instantiate agent ------------------------------------------------------
import random
from ray.rllib.agents import ppo

config = {
    "env_config": {},
    "multiagent": {
        "policies": {
            # the first tuple value is None -> uses default policy
            "unit-1": (None, u_obs_space, u_act_space, {"gamma": 0.85}),
            "unit-2": (None, u_obs_space, u_act_space, {"gamma": 0.99}),
            "citytile": (None, ct_obs_space, ct_act_space, {}),
        },
        "policy_mapping_fn":
            lambda agent_id:
                "citytile"  # Citytiles always have the same policy
                if agent_id.startswith("u_")
                else random.choice(["unit-1", "unit-2"])  # Randomly choose from unit policies
    },
}

trainer = ppo.PPOTrainer(env=LuxEnv, config=config)

# (5) Train away -------------------------------------------------------------
while True:
    print(trainer.train())

See examples/training.py


See also the LuxPythonEnvGym OpenAI-gym port by @glmcdona.

Jaime Ruiz Serra

Owner
Jaime
Deep Reinforcement Learning, Computer Vision, Robotics
Jaime
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022