SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

Overview

SPRING

PWC

PWC

PWC

PWC

This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021.

With SPRING you can perform both state-of-the-art Text-to-AMR parsing and AMR-to-Text generation without many cumbersome external components. If you use the code, please reference this work in your paper:

@inproceedings{bevilacqua-etal-2021-one,
    title = {One {SPRING} to Rule Them Both: {S}ymmetric {AMR} Semantic Parsing and Generation without a Complex Pipeline},
    author = {Bevilacqua, Michele and Blloshmi, Rexhina and Navigli, Roberto},
    booktitle = {Proceedings of AAAI},
    year = {2021}
}

Pretrained Checkpoints

Here we release our best SPRING models which are based on the DFS linearization.

Text-to-AMR Parsing

AMR-to-Text Generation

If you need the checkpoints of other experiments in the paper, please send us an email.

Installation

cd spring
pip install -r requirements.txt
pip install -e .

The code only works with transformers < 3.0 because of a disrupting change in positional embeddings. The code works fine with torch 1.5. We recommend the usage of a new conda env.

Train

Modify config.yaml in configs. Instructions in comments within the file. Also see the appendix.

Text-to-AMR

python bin/train.py --config configs/config.yaml --direction amr

Results in runs/

AMR-to-Text

python bin/train.py --config configs/config.yaml --direction text

Results in runs/

Evaluate

Text-to-AMR

python bin/predict_amrs.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.amr.txt \
    --pred-path data/tmp/amr2.0/pred.amr.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.amr.txt and pred.amr.txt will contain, respectively, the concatenated gold and the predictions.

To reproduce our paper's results, you will also need need to run the BLINK entity linking system on the prediction file (data/tmp/amr2.0/pred.amr.txt in the previous code snippet). To do so, you will need to install BLINK, and download their models:

git clone https://github.com/facebookresearch/BLINK.git
cd BLINK
pip install -r requirements.txt
sh download_blink_models.sh
cd models
wget http://dl.fbaipublicfiles.com/BLINK//faiss_flat_index.pkl
cd ../..

Then, you will be able to launch the blinkify.py script:

python bin/blinkify.py \
    --datasets data/tmp/amr2.0/pred.amr.txt \
    --out data/tmp/amr2.0/pred.amr.blinkified.txt \
    --device cuda \
    --blink-models-dir BLINK/models

To have comparable Smatch scores you will also need to use the scripts available at https://github.com/mdtux89/amr-evaluation, which provide results that are around ~0.3 Smatch points lower than those returned by bin/predict_amrs.py.

AMR-to-Text

python bin/predict_sentences.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.text.txt \
    --pred-path data/tmp/amr2.0/pred.text.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.text.txt and pred.text.txt will contain, respectively, the concatenated gold and the predictions. For BLEU, chrF++, and Meteor in order to be comparable you will need to tokenize both gold and predictions using JAMR tokenizer. To compute BLEU and chrF++, please use bin/eval_bleu.py. For METEOR, use https://www.cs.cmu.edu/~alavie/METEOR/ . For BLEURT don't use tokenization and run the eval with https://github.com/google-research/bleurt. Also see the appendix.

Linearizations

The previously shown commands assume the use of the DFS-based linearization. To use BFS or PENMAN decomment the relevant lines in configs/config.yaml (for training). As for the evaluation scripts, substitute the --penman-linearization --use-pointer-tokens line with --use-pointer-tokens for BFS or with --penman-linearization for PENMAN.

License

This project is released under the CC-BY-NC-SA 4.0 license (see LICENSE). If you use SPRING, please put a link to this repo.

Acknowledgements

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 and the ELEXIS project No. 731015 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under the grant "Dipartimenti di eccellenza 2018-2022" of the Department of Computer Science of the Sapienza University of Rome.

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023