Final Project Bootcamp Zero

Overview

The Quest (Pygame)

Descripción

Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding.

El juego consiste en la búsqueda de nuevos planetas para colonizarlos. Durante el transcurso del viaje aparecerán desafíos, ya sean naves enemigas u oleadas de meteoritos. Cada nivel constará de 1 minuto más de viaje y cada desafío aumentará en número y velocidad. El jugador dispondrá de munición de balas y carga de misiles para afrontar los desafíos durante el viaje. Propulsor que reducirá el tiempo de viaje a la mitad aunque no podrá moverme mientras esté activo. Y una barra de salud más 3 vidas extra. Si consume todas las vidas perderá la partida.

Informacion del repositorio

Realizado por:

Nombre Email
Sergio Fuentes (Seven) [email protected]

En el transcurso de las 3 semanas para realizar el proyecto final del curso he completado The Quest v1.0. Utilicé varias herramientas objeto prediseñados para una funcionalidad mejorada y eficiente durante el desarrollo del juego. De los más útiles a destacar fue el objeto Sprite sheet que me facilitó la descarga de cualquier imagen y la creación de instancias heredando todas sus características como objeto base. Un objeto con 4 tipos diferentes de temporizadores múltiples. Un algoritmo muy reducido que me permitía moverme entre las escenas del juego en cualquier sentido. Un objeto que controla consultas CRUD con SQLite registrando los datos de cada jugador en todo momento. También creé botones, barras, tablero y teclado entre otros para facilitar y mejorar la interactividad del usuario. Y múltiples ideas que preferí mostrar y sorprender durante la experiencia del juego.

Para abrir el juego, hay que lanzar run.pyw, teniendo previamente descargados todos los archivos del repositorio.

Estructura del repositorio

  • Assets: Carpeta que contiene todos los activos del juego.

    • Audio: Contiene la música de cada escena y los sonidos fx del juego en formato .ogg.

    • Data: Contiene .db como base de datos de jugadores. La tabla almacena estilo y modelo de barco, último nivel y nivel máximo, último puntaje y puntaje máximo.

    • Fonts: Diferentes .ttf para los estilos de fuente proporcionados por el juego.

    • Images: Tiene las imágenes .png y .jpg tipo hojas de sprite.

    • Scripts: Aquí están todos los códigos .py que utiliza el juego para generar los datos del código del juego.

      • controller: Controla todas las escenas a través de sus bucles principales. Les da los atributos que a su vez recoge de la escena anterior.
      • database: Clase DataBase donde conecta los datos del juego a la base de datos a través de las funciones CRUD.
      • documents: Guarda los documentos credits, history y guide en forma de string, se muestran en el menú principal del juego.
      • enemies: Clase Enemy que estructura todas las características de los enemigos. Hay 3 tipos de IA: patrulleros, velocistas y kamikazes.
      • environment: Contiene las clases Foreground, Background, Farground, Planet y Portal. Se encargan de la ambientación y acompañan el movimiento del jugador.
      • manager: Importador de todas las cargas de música, sonidos e imágenes del juego.
      • obstacles: Clase Meteor que estructura toda la funcionalidad de los meteoros.
      • players: Clase Player que estructura todas las características y funcionalidades del jugador según el estilo que elijas. Hay 3 estilos: Daño, Defensa y Curación.
      • scenes: Contiene las clases Main, Menu, Game y Record que heredan de la clase Scene. Se encargan de controlar el comportamiento del juego en cada escena.
      • settings: Guarda todas las constantes del juego. Los ajustes se especifican desde aquí.
      • tools: Contiene las clases Timer, Sprite_sheet, Button, Board, Bar, Keyboard, Canvas, Icon, HealthBar y Screen_fade. Se utilizan como herramientas y componentes accesorios.
      • weapons: Contiene las clases Bullet, Missile y Explosion. Tipos de armas que puede utilizar cualquier personaje. Explosion es una extensión de Missile.
    • main: Archivo .py como lanzador alternativo del juego.

  • commits: Archivo .md registra todos los commits del repositorio.

  • requirements: Archivo .txt registra los requisitos para abrir el juego: pygame v2.0.2.

  • run: Archivo .pyw es el lanzador principal del juego.

Owner
Seven-z01
Seven-z01
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022