基于Paddlepaddle复现yolov5,支持PaddleDetection接口

Overview

PaddleDetection yolov5

https://github.com/Sharpiless/PaddleDetection-Yolov5

简介

PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。

PaddleDetection模块化地实现了多种主流目标检测算法,提供了丰富的数据增强策略、网络模块组件(如骨干网络)、损失函数等,并集成了模型压缩和跨平台高性能部署能力。

经过长时间产业实践打磨,PaddleDetection已拥有顺畅、卓越的使用体验,被工业质检、遥感图像检测、无人巡检、新零售、互联网、科研等十多个行业的开发者广泛应用。

Yolov5:

YOLOV4出现之后不久,YOLOv5横空出世。YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升。虽然YOLOv5算法并没有与YOLOv4算法进行性能比较与分析,但是YOLOv5在COCO数据集上面的测试效果还是挺不错的。大家对YOLOv5算法的创新性半信半疑,有的人对其持肯定态度,有的人对其持否定态度。在我看来,YOLOv5检测算法中还是存在很多可以学习的地方,虽然这些改进思路看来比较简单或者创新点不足,但是它们确定可以提升检测算法的性能。其实工业界往往更喜欢使用这些方法,而不是利用一个超级复杂的算法来获得较高的检测精度。本文将对YOLOv5检测算法进行复现。

下载预训练模型:

https://drive.google.com/file/d/16tREOOJzKgOLw31bSiUNz0iBdqoRzq1i/view?usp=sharing

训练Yolov5:

python tools/train.py -c configs/yolov5/yolov5s_CSPdarknet_roadsign.yml

实验结果:

0.9087 mAP on roadsign dataset.

01

01

关注我的公众号:

感兴趣的同学关注我的公众号——可达鸭的深度学习教程:

在这里插入图片描述

联系作者:

B站:https://space.bilibili.com/470550823

CSDN:https://blog.csdn.net/weixin_44936889

AI Studio:https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156

Github:https://github.com/Sharpiless

%cd work/
/home/aistudio/work
!unzip PPDet-yolov5v2.zip -d ./
!python tools/train.py -c configs/yolov5/yolov5s_CSPdarknet_roadsign.yml --eval
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  if data.dtype == np.object:
[07/15 10:17:41] ppdet.utils.download WARNING: Config annotation dataset/roadsign_voc/train.txt is not a file, dataset config is not valid
[07/15 10:17:41] ppdet.utils.download INFO: Dataset /home/aistudio/work/dataset/roadsign_voc is not valid for reason above, try searching /home/aistudio/.cache/paddle/dataset or downloading dataset...
[07/15 10:17:41] ppdet.utils.download INFO: Found /home/aistudio/.cache/paddle/dataset/roadsign_voc/annotations
[07/15 10:17:41] ppdet.utils.download INFO: Found /home/aistudio/.cache/paddle/dataset/roadsign_voc/images
[07/15 10:17:41] reader WARNING: Shared memory size is less than 1G, disable shared_memory in DataLoader
[07/15 10:17:42] ppdet.utils.checkpoint INFO: Finish loading model weights: output.pdparams
[07/15 10:17:51] ppdet.engine INFO: Epoch: [0] [ 0/87] learning_rate: 0.000033 loss_xy: 0.752040 loss_wh: 0.698217 loss_iou: 2.634957 loss_obj: 11.301561 loss_cls: 1.041652 loss: 16.428429 eta: 8:28:32 batch_cost: 8.7679 data_cost: 0.9061 ips: 0.9124 images/s
[07/15 10:19:42] ppdet.engine INFO: Epoch: [0] [20/87] learning_rate: 0.000047 loss_xy: 0.529626 loss_wh: 0.569290 loss_iou: 2.436198 loss_obj: 8.576855 loss_cls: 1.023474 loss: 13.317031 eta: 5:29:28 batch_cost: 5.5608 data_cost: 0.0002 ips: 1.4386 images/s
[07/15 10:21:42] ppdet.engine INFO: Epoch: [0] [40/87] learning_rate: 0.000060 loss_xy: 0.500230 loss_wh: 0.502719 loss_iou: 2.226187 loss_obj: 4.208471 loss_cls: 0.890207 loss: 8.235611 eta: 5:35:40 batch_cost: 6.0032 data_cost: 0.0003 ips: 1.3326 images/s
[07/15 10:23:23] ppdet.engine INFO: Epoch: [0] [60/87] learning_rate: 0.000073 loss_xy: 0.519860 loss_wh: 0.599364 loss_iou: 2.455585 loss_obj: 3.626266 loss_cls: 1.031202 loss: 8.345335 eta: 5:18:38 batch_cost: 5.0474 data_cost: 0.0003 ips: 1.5850 images/s
[07/15 10:25:13] ppdet.engine INFO: Epoch: [0] [80/87] learning_rate: 0.000087 loss_xy: 0.568008 loss_wh: 0.618775 loss_iou: 2.583227 loss_obj: 3.632595 loss_cls: 0.863238 loss: 7.575019 eta: 5:15:29 batch_cost: 5.4984 data_cost: 0.0002 ips: 1.4550 images/s
[07/15 10:25:47] ppdet.utils.checkpoint INFO: Save checkpoint: output/yolov5s_CSPdarknet_roadsign
[07/15 10:25:47] ppdet.utils.download WARNING: Config annotation dataset/roadsign_voc/valid.txt is not a file, dataset config is not valid
[07/15 10:25:47] ppdet.utils.download INFO: Dataset /home/aistudio/work/dataset/roadsign_voc is not valid for reason above, try searching /home/aistudio/.cache/paddle/dataset or downloading dataset...
[07/15 10:25:47] ppdet.utils.download INFO: Found /home/aistudio/.cache/paddle/dataset/roadsign_voc/annotations
[07/15 10:25:47] ppdet.utils.download INFO: Found /home/aistudio/.cache/paddle/dataset/roadsign_voc/images
[07/15 10:25:48] ppdet.engine INFO: Eval iter: 0
[07/15 10:26:09] ppdet.engine INFO: Eval iter: 100
[07/15 10:26:25] ppdet.metrics.metrics INFO: Accumulating evaluatation results...
[07/15 10:26:25] ppdet.metrics.metrics INFO: mAP(0.50, integral) = 85.84%
[07/15 10:26:25] ppdet.engine INFO: Total sample number: 176, averge FPS: 4.751870228058035
[07/15 10:26:25] ppdet.engine INFO: Best test bbox ap is 0.858.
[07/15 10:26:25] ppdet.utils.checkpoint INFO: Save checkpoint: output/yolov5s_CSPdarknet_roadsign
[07/15 10:26:35] ppdet.engine INFO: Epoch: [1] [ 0/87] learning_rate: 0.000091 loss_xy: 0.567437 loss_wh: 0.623783 loss_iou: 2.511684 loss_obj: 3.314124 loss_cls: 0.949793 loss: 7.338743 eta: 5:16:15 batch_cost: 6.2481 data_cost: 0.0003 ips: 1.2804 images/s
[07/15 10:28:39] ppdet.engine INFO: Epoch: [1] [20/87] learning_rate: 0.000100 loss_xy: 0.583728 loss_wh: 0.708465 loss_iou: 2.704193 loss_obj: 3.461134 loss_cls: 1.127932 loss: 9.057523 eta: 5:20:59 batch_cost: 6.2270 data_cost: 0.0003 ips: 1.2847 images/s
[07/15 10:30:28] ppdet.engine INFO: Epoch: [1] [40/87] learning_rate: 0.000100 loss_xy: 0.576615 loss_wh: 0.655194 loss_iou: 2.566234 loss_obj: 2.921384 loss_cls: 1.010778 loss: 7.844104 eta: 5:16:43 batch_cost: 5.4392 data_cost: 0.0003 ips: 1.4708 images/s
[07/15 10:32:34] ppdet.engine INFO: Epoch: [1] [60/87] learning_rate: 0.000100 loss_xy: 0.583071 loss_wh: 0.726098 loss_iou: 2.730413 loss_obj: 3.053501 loss_cls: 0.991524 loss: 8.496977 eta: 5:19:40 batch_cost: 6.3128 data_cost: 0.0003 ips: 1.2673 images/s
[07/15 10:34:31] ppdet.engine INFO: Epoch: [1] [80/87] learning_rate: 0.000100 loss_xy: 0.606061 loss_wh: 0.652358 loss_iou: 2.841094 loss_obj: 3.237591 loss_cls: 1.084277 loss: 8.605825 eta: 5:18:16 batch_cost: 5.8318 data_cost: 0.0003 ips: 1.3718 images/s
[07/15 10:34:59] ppdet.utils.checkpoint INFO: Save checkpoint: output/yolov5s_CSPdarknet_roadsign
[07/15 10:35:00] ppdet.engine INFO: Eval iter: 0
[07/15 10:35:19] ppdet.engine INFO: Eval iter: 100
[07/15 10:35:33] ppdet.metrics.metrics INFO: Accumulating evaluatation results...
[07/15 10:35:33] ppdet.metrics.metrics INFO: mAP(0.50, integral) = 85.30%
[07/15 10:35:33] ppdet.engine INFO: Total sample number: 176, averge FPS: 5.151774310709877
[07/15 10:35:33] ppdet.engine INFO: Best test bbox ap is 0.858.
[07/15 10:35:46] ppdet.engine INFO: Epoch: [2] [ 0/87] learning_rate: 0.000100 loss_xy: 0.537015 loss_wh: 0.587401 loss_iou: 2.352699 loss_obj: 3.121367 loss_cls: 1.012583 loss: 7.857001 eta: 5:17:11 batch_cost: 5.8271 data_cost: 0.0003 ips: 1.3729 images/s
^C
!rm -rf output/
!zip -r code.zip ./*
Owner
BIT可达鸭
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022