Principled Detection of Out-of-Distribution Examples in Neural Networks

Overview

ODIN: Out-of-Distribution Detector for Neural Networks

This is a PyTorch implementation for detecting out-of-distribution examples in neural networks. The method is described in the paper Principled Detection of Out-of-Distribution Examples in Neural Networks by S. Liang, Yixuan Li and R. Srikant. The method reduces the false positive rate from the baseline 34.7% to 4.3% on the DenseNet (applied to CIFAR-10) when the true positive rate is 95%.

Experimental Results

We used two neural network architectures, DenseNet-BC and Wide ResNet. The PyTorch implementation of DenseNet-BC is provided by Andreas Veit and Brandon Amos. The PyTorch implementation of Wide ResNet is provided by Sergey Zagoruyko. The experimental results are shown as follows. The definition of each metric can be found in the paper. performance

Pre-trained Models

We provide four pre-trained neural networks: (1) two DenseNet-BC networks trained on CIFAR-10 and CIFAR-100 respectively; (2) two Wide ResNet networks trained on CIFAR-10 and CIFAR-100 respectively. The test error rates are given by:

Architecture CIFAR-10 CIFAR-100
DenseNet-BC 4.81 22.37
Wide ResNet 3.71 19.86

Running the code

Dependencies

  • CUDA 8.0

  • PyTorch

  • Anaconda2 or 3

  • At least three GPU

    Note: Reproducing results of DenseNet-BC only requires one GPU, but reproducing results of Wide ResNet requires three GPUs. Single GPU version for Wide ResNet will be released soon in the future.

Downloading Out-of-Distribtion Datasets

We provide download links of five out-of-distributin datasets:

Here is an example code of downloading Tiny-ImageNet (crop) dataset. In the root directory, run

mkdir data
cd data
wget https://www.dropbox.com/s/avgm2u562itwpkl/Imagenet.tar.gz
tar -xvzf Imagenet.tar.gz
cd ..

Downloading Neural Network Models

We provide download links of four pre-trained models.

Here is an example code of downloading DenseNet-BC trained on CIFAR-10. In the root directory, run

mkdir models
cd models
wget https://www.dropbox.com/s/wr4kjintq1tmorr/densenet10.pth.tar.gz
tar -xvzf densenet10.pth.tar.gz
cd ..

Running

Here is an example code reproducing the results of DenseNet-BC trained on CIFAR-10 where TinyImageNet (crop) is the out-of-distribution dataset. The temperature is set as 1000, and perturbation magnitude is set as 0.0014. In the root directory, run

cd code
# model: DenseNet-BC, in-distribution: CIFAR-10, out-distribution: TinyImageNet (crop)
# magnitude: 0.0014, temperature 1000, gpu: 0
python main.py --nn densenet10 --out_dataset Imagenet --magnitude 0.0014 --temperature 1000 --gpu 0

Note: Please choose arguments according to the following.

args

  • args.nn: the arguments of neural networks are shown as follows

    Nerual Network Models args.nn
    DenseNet-BC trained on CIFAR-10 densenet10
    DenseNet-BC trained on CIFAR-100 densenet100
  • args.out_dataset: the arguments of out-of-distribution datasets are shown as follows

    Out-of-Distribution Datasets args.out_dataset
    Tiny-ImageNet (crop) Imagenet
    Tiny-ImageNet (resize) Imagenet_resize
    LSUN (crop) LSUN
    LSUN (resize) LSUN_resize
    iSUN iSUN
    Uniform random noise Uniform
    Gaussian random noise Gaussian
  • args.magnitude: the optimal noise magnitude can be found below. In practice, the optimal choices of noise magnitude are model-specific and need to be tuned accordingly.

    Out-of-Distribution Datasets densenet10 densenet100 wideresnet10 wideresnet100
    Tiny-ImageNet (crop) 0.0014 0.0014 0.0005 0.0028
    Tiny-ImageNet (resize) 0.0014 0.0028 0.0011 0.0028
    LSUN (crop) 0 0.0028 0 0.0048
    LSUN (resize) 0.0014 0.0028 0.0006 0.002
    iSUN 0.0014 0.0028 0.0008 0.0028
    Uniform random noise 0.0014 0.0028 0.0014 0.0028
    Gaussian random noise 0.0014 0.0028 0.0014 0.0028
  • args.temperature: temperature is set to 1000 in all cases.

  • args.gpu: make sure you use the following gpu when running the code:

    Neural Network Models args.gpu
    densenet10 0
    densenet100 0
    wideresnet10 1
    wideresnet100 2

Outputs

Here is an example of output.

Neural network architecture:          DenseNet-BC-100
In-distribution dataset:                     CIFAR-10
Out-of-distribution dataset:     Tiny-ImageNet (crop)

                          Baseline         Our Method
FPR at TPR 95%:              34.8%               4.3% 
Detection error:              9.9%               4.6%
AUROC:                       95.3%              99.1%
AUPR In:                     96.4%              99.2%
AUPR Out:                    93.8%              99.1%
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022