This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Overview

Self-Supervised Learning with Vision Transformers

By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu

This repo is the official implementation of "Self-Supervised Learning with Swin Transformers".

A important feature of this codebase is to include Swin Transformer as one of the backbones, such that we can evaluate the transferring performance of the learnt representations on down-stream tasks of object detection and semantic segmentation. This evaluation is usually not included in previous works due to the use of ViT/DeiT, which has not been well tamed for down-stream tasks.

It currently includes code and models for the following tasks:

Self-Supervised Learning and Linear Evaluation: Included in this repo. See get_started.md for a quick start.

Transferring Performance on Object Detection/Instance Segmentation: See Swin Transformer for Object Detection.

Transferring Performance on Semantic Segmentation: See Swin Transformer for Semantic Segmentation.

Highlights

  • Include down-stream evaluation: the first work to evaluate the transferring performance on down-stream tasks for SSL using Transformers
  • Small tricks: significantly less tricks than previous works, such as MoCo v3 and DINO
  • High accuracy on ImageNet-1K linear evaluation: 72.8 vs 72.5 (MoCo v3) vs 72.5 (DINO) using DeiT-S/16 and 300 epoch pre-training

Updates

05/13/2021

  1. Self-Supervised models with DeiT-Small on ImageNet-1K (MoBY-DeiT-Small-300Ep-Pretrained, MoBY-DeiT-Small-300Ep-Linear) are provided.
  2. The supporting code and config for self-supervised learning with DeiT-Small are provided.

05/11/2021

Initial Commits:

  1. Self-Supervised Pre-training models on ImageNet-1K (MoBY-Swin-T-300Ep-Pretrained, MoBY-Swin-T-300Ep-Linear) are provided.
  2. The supported code and models for self-supervised pre-training and ImageNet-1K linear evaluation, COCO object detection and ADE20K semantic segmentation are provided.

Introduction

MoBY: a self-supervised learning approach by combining MoCo v2 and BYOL

MoBY (the name MoBY stands for MoCo v2 with BYOL) is initially described in arxiv, which is a combination of two popular self-supervised learning approaches: MoCo v2 and BYOL. It inherits the momentum design, the key queue, and the contrastive loss used in MoCo v2, and inherits the asymmetric encoders, asymmetric data augmentations and the momentum scheduler in BYOL.

MoBY achieves reasonably high accuracy on ImageNet-1K linear evaluation: 72.8% and 75.3% top-1 accuracy using DeiT and Swin-T, respectively, by 300-epoch training. The performance is on par with recent works of MoCo v3 and DINO which adopt DeiT as the backbone, but with much lighter tricks.

teaser_moby

Swin Transformer as a backbone

Swin Transformer (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It achieves strong performance on COCO object detection (58.7 box AP and 51.1 mask AP on test-dev) and ADE20K semantic segmentation (53.5 mIoU on val), surpassing previous models by a large margin.

We involve Swin Transformer as one of backbones to evaluate the transferring performance on down-stream tasks such as object detection. This differentiate this codebase with other approaches studying SSL on Transformer architectures.

ImageNet-1K linear evaluation

Method Architecture Epochs Params FLOPs img/s Top-1 Accuracy Pre-trained Checkpoint Linear Checkpoint
Supervised Swin-T 300 28M 4.5G 755.2 81.2 Here
MoBY Swin-T 100 28M 4.5G 755.2 70.9 TBA
MoBY1 Swin-T 100 28M 4.5G 755.2 72.0 TBA
MoBY DeiT-S 300 22M 4.6G 940.4 72.8 GoogleDrive/GitHub/Baidu GoogleDrive/GitHub/Baidu
MoBY Swin-T 300 28M 4.5G 755.2 75.3 GoogleDrive/GitHub/Baidu GoogleDrive/GitHub/Baidu
  • 1 denotes the result of MoBY which has adopted a trick from MoCo v3 that replace theLayerNorm layers before the MLP blocks by BatchNorm.

  • Access code for baidu is moby.

Transferring to Downstream Tasks

COCO Object Detection (2017 val)

Backbone Method Model Schd. box mAP mask mAP Params FLOPs
Swin-T Mask R-CNN Sup. 1x 43.7 39.8 48M 267G
Swin-T Mask R-CNN MoBY 1x 43.6 39.6 48M 267G
Swin-T Mask R-CNN Sup. 3x 46.0 41.6 48M 267G
Swin-T Mask R-CNN MoBY 3x 46.0 41.7 48M 267G
Swin-T Cascade Mask R-CNN Sup. 1x 48.1 41.7 86M 745G
Swin-T Cascade Mask R-CNN MoBY 1x 48.1 41.5 86M 745G
Swin-T Cascade Mask R-CNN Sup. 3x 50.4 43.7 86M 745G
Swin-T Cascade Mask R-CNN MoBY 3x 50.2 43.5 86M 745G

ADE20K Semantic Segmentation (val)

Backbone Method Model Crop Size Schd. mIoU mIoU (ms+flip) Params FLOPs
Swin-T UPerNet Sup. 512x512 160K 44.51 45.81 60M 945G
Swin-T UPerNet MoBY 512x512 160K 44.06 45.58 60M 945G

Citing MoBY and Swin

MoBY

@article{xie2021moby,
  title={Self-Supervised Learning with Swin Transformers}, 
  author={Zhenda Xie and Yutong Lin and Zhuliang Yao and Zheng Zhang and Qi Dai and Yue Cao and Han Hu},
  journal={arXiv preprint arXiv:2105.04553},
  year={2021}
}

Swin Transformer

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Getting Started

Owner
Swin Transformer
This organization maintains repositories built on Swin Transformers. The pretrained models locate at https://github.com/microsoft/Swin-Transformer
Swin Transformer
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021