Knowledge Oriented Programming Language

Related tags

Text Data & NLPKoPL
Overview

KoPL: 面向知识的推理问答编程语言

安装 | 快速开始 | 文档

KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,KoPL的27个基本函数覆盖对多种知识元素(如概念、实体、关系、属性、修饰符等)的操作,并支持多种问题类型(如计数、事实验证、比较等)的查询。KoPL提供透明的复杂问题推理过程,易于理解和使用。KoPL面向知识库、文本等不同形式的知识资源,可扩展性强。

下面的代码演示了如何使用Python代码,实现对一个自然语言问题的推理问答。

from kopl.kopl import KoPLEngine
from kopl.test.test_example import example_kb

engine = KoPLEngine(example_kb) # 创建可以在example_kb这个知识库上进行操作的engine示例

# 查询问题:Who is taller, LeBron James Jr. or his father?
ans = engine.SelectBetween( # 在两个实体中,查询'height'更大的实体
  engine.Find('LeBron James Jr.'), # 找到实体'LeBron James Jr'
  engine.Relate( # 找到与'LeBron James Jr'的'father
    engine.Find('LeBron James Jr.'), # 找到实体'LeBron James Jr'
    'father', # 关系标签
    'forward' # ’forward‘代表'LeBron James Jr'为头实体
  ),
  'height', # 属性标签
  'greater' # 查询属性值更大的实体
)

print(ans) # ans是实体名字列表

在这个示例里,我们查询LeBron James Jr.和他的父亲谁更高,KoPL程序给出了正确的答案: LeBron James!

安装

KoPL支持Linux (e.g., Ubuntu/CentOS),macOS,Windows。

其依赖为:

  • python >= 3.6

  • tqdm >= 4.62

KoPL提供pip安装, 下面将展示Ubuntu的安装命令:

  $ pip install KoPL

运行下面的代码

import kopl

from kopl.test.test_example import *

run_test()

如果测试运行成功,恭喜您已经安装成功。

快速开始

您可以准备自己的知识库,使用KoPL实现推理问答。知识库的格式请参考 知识库。 更多使用KoPL程序进行的简单问答请参考 简单问答,复杂问答请参考 复杂问答

您也可以使用我们为您提供的查询服务,快速开启KoPL之旅。

文档

我们为您提供了KoPL文档,详细介绍了KoPL面向的知识元素,KoPL的基本函数,KoPL引擎的API。

Owner
THU-KEG
THU-KEG
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning

SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode

Tower 1 Nov 20, 2021
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
Telegram AI chat bot written in Python using Pyrogram

Aurora_Al Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @AuroraAl. Require

♗CσNϙUҽRσR_MҽSƙEƚҽҽR 1 Oct 31, 2021
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022