============================================================================================================ `MILA will stop developing Theano <https://groups.google.com/d/msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ>`_. The PyMC developers are continuing Theano development in a `fork <https://github.com/pymc-devs/theano-pymc>`_. ============================================================================================================ To install the package, see this page: http://deeplearning.net/software/theano/install.html For the documentation, see the project website: http://deeplearning.net/software/theano/ Related Projects: https://github.com/Theano/Theano/wiki/Related-projects It is recommended that you look at the documentation on the website, as it will be more current than the documentation included with the package. In order to build the documentation yourself, you will need sphinx. Issue the following command: :: python ./doc/scripts/docgen.py Documentation is built into ``html/`` The PDF of the documentation can be found at ``html/theano.pdf`` ================ DIRECTORY LAYOUT ================ ``Theano`` (current directory) is the distribution directory. * ``Theano/theano`` contains the package * ``Theano/theano`` has several submodules: * ``gof`` + ``compile`` are the core * ``scalar`` depends upon core * ``tensor`` depends upon ``scalar`` * ``sparse`` depends upon ``tensor`` * ``sandbox`` can depend on everything else * ``Theano/examples`` are copies of the example found on the wiki * ``Theano/benchmark`` and ``Theano/examples`` are in the distribution, but not in the Python package * ``Theano/bin`` contains executable scripts that are copied to the bin folder when the Python package is installed * Tests are distributed and are part of the package, i.e. fall in the appropriate submodules * ``Theano/doc`` contains files and scripts used to generate the documentation * ``Theano/html`` is where the documentation will be generated
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
Overview
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records
HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro
ElasticFace: Elastic Margin Loss for Deep Face Recognition
This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.
HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex
Deep Learning Algorithms for Hedging with Frictions
Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.
Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016
Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo
Self-Supervised Image Denoising via Iterative Data Refinement
Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S
From a body shape, infer the anatomic skeleton.
OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch
Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)
Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.
Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod
Speech Recognition using DeepSpeech2.
deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS
A custom DeepStack model for detecting 16 human actions.
DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo
A smaller subset of 10 easily classified classes from Imagenet, and a little more French
Imagenette š¶ Imagenette, gentille imagenette, Imagenette, je te plumerai. š¶ (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image
Spatial color quantization in Rust
rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).
Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:
Self-Learning - Books Papers, Courses & more I have to learn soon
Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U
A Pytorch Implementation of [Source dataāfree domain adaptation of object detector through domain
A Pytorch Implementation of Source dataāfree domain adaptation of object detector through domaināspecific perturbation Please follow Faster R-CNN and