Convolutional 2D Knowledge Graph Embeddings resources

Related tags

Deep LearningConvE
Overview

ConvE

Convolutional 2D Knowledge Graph Embeddings resources.

Paper: Convolutional 2D Knowledge Graph Embeddings

Used in the paper, but do not use these datasets for your research: FB15k and WN18. Please also note that the Kinship and Nations datasets have a high number of inverse relationships which makes them unsuitable for research. Nations has +95% inverse relationships and Kinship about 48%.

ConvE key facts

Predictive performance

Dataset MR MRR [email protected] [email protected] [email protected]
FB15k 64 0.75 0.87 0.80 0.67
WN18 504 0.94 0.96 0.95 0.94
FB15k-237 246 0.32 0.49 0.35 0.24
WN18RR 4766 0.43 0.51 0.44 0.39
YAGO3-10 2792 0.52 0.66 0.56 0.45
Nations 2 0.82 1.00 0.88 0.72
UMLS 1 0.94 0.99 0.97 0.92
Kinship 2 0.83 0.98 0.91 0.73

Run time performance

For an embedding size of 200 and batch size 128, a single batch takes on a GTX Titan X (Maxwell):

  • 64ms for 100,000 entities
  • 80ms for 1,000,000 entities

Parameter efficiency

Parameters ConvE/DistMult MRR ConvE/DistMult [email protected] ConvE/DistMult [email protected]
~5.0M 0.32 / 0.24 0.49 / 0.42 0.24 / 0.16
1.89M 0.32 / 0.23 0.49 / 0.41 0.23 / 0.15
0.95M 0.30 / 0.22 0.46 / 0.39 0.22 / 0.14
0.24M 0.26 / 0.16 0.39 / 0.31 0.19 / 0.09

ConvE with 8 times less parameters is still more powerful than DistMult. Relational Graph Convolutional Networks use roughly 32x more parameters to have the same performance as ConvE.

Installation

This repo supports Linux and Python installation via Anaconda.

  1. Install PyTorch using Anaconda.
  2. Install the requirements pip install -r requirements.txt
  3. Download the default English model used by spaCy, which is installed in the previous step python -m spacy download en
  4. Run the preprocessing script for WN18RR, FB15k-237, YAGO3-10, UMLS, Kinship, and Nations: sh preprocess.sh
  5. You can now run the model

Running a model

Parameters need to be specified by white-space tuples for example:

CUDA_VISIBLE_DEVICES=0 python main.py --model conve --data FB15k-237 \
                                      --input-drop 0.2 --hidden-drop 0.3 --feat-drop 0.2 \
                                      --lr 0.003 --preprocess

will run a ConvE model on FB15k-237.

To run a model, you first need to preprocess the data once. This can be done by specifying the --preprocess parameter:

CUDA_VISIBLE_DEVICES=0 python main.py --data DATASET_NAME --preprocess

After the dataset is preprocessed it will be saved to disk and this parameter can be omitted.

CUDA_VISIBLE_DEVICES=0 python main.py --data DATASET_NAME

The following parameters can be used for the --model parameter:

conve
distmult
complex

The following datasets can be used for the --data parameter:

FB15k-237
WN18RR
YAGO3-10
umls
kinship
nations

And here a complete list of parameters.

Link prediction for knowledge graphs

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
                        input batch size for training (default: 128)
  --test-batch-size TEST_BATCH_SIZE
                        input batch size for testing/validation (default: 128)
  --epochs EPOCHS       number of epochs to train (default: 1000)
  --lr LR               learning rate (default: 0.003)
  --seed S              random seed (default: 17)
  --log-interval LOG_INTERVAL
                        how many batches to wait before logging training
                        status
  --data DATA           Dataset to use: {FB15k-237, YAGO3-10, WN18RR, umls,
                        nations, kinship}, default: FB15k-237
  --l2 L2               Weight decay value to use in the optimizer. Default:
                        0.0
  --model MODEL         Choose from: {conve, distmult, complex}
  --embedding-dim EMBEDDING_DIM
                        The embedding dimension (1D). Default: 200
  --embedding-shape1 EMBEDDING_SHAPE1
                        The first dimension of the reshaped 2D embedding. The
                        second dimension is infered. Default: 20
  --hidden-drop HIDDEN_DROP
                        Dropout for the hidden layer. Default: 0.3.
  --input-drop INPUT_DROP
                        Dropout for the input embeddings. Default: 0.2.
  --feat-drop FEAT_DROP
                        Dropout for the convolutional features. Default: 0.2.
  --lr-decay LR_DECAY   Decay the learning rate by this factor every epoch.
                        Default: 0.995
  --loader-threads LOADER_THREADS
                        How many loader threads to use for the batch loaders.
                        Default: 4
  --preprocess          Preprocess the dataset. Needs to be executed only
                        once. Default: 4
  --resume              Resume a model.
  --use-bias            Use a bias in the convolutional layer. Default: True
  --label-smoothing LABEL_SMOOTHING
                        Label smoothing value to use. Default: 0.1
  --hidden-size HIDDEN_SIZE
                        The side of the hidden layer. The required size
                        changes with the size of the embeddings. Default: 9728
                        (embedding size 200).

To reproduce most of the results in the ConvE paper, you can use the default parameters and execute the command below:

CUDA_VISIBLE_DEVICES=0 python main.py --data DATASET_NAME

For the reverse model, you can run the provided file with the name of the dataset name and a threshold probability:

python inverse_model.py WN18RR 0.9

Changing the embedding size for ConvE

If you want to change the embedding size you can do that via the ``--embedding-dim parameter. However, for ConvE, since the embedding is reshaped as a 2D embedding one also needs to pass the first dimension of the reshaped embedding (--embedding-shape1`) while the second dimension is infered. When once changes the embedding size, the hidden layer size `--hidden-size` also needs to be different but it is difficult to determine before run time. The easiest way to determine the hidden size is to run the model, let it run on an error due to wrong shape, and then reshape according to the dimension in the error message.

Example: Change embedding size to be 100. We want 10x10 2D embeddings. We run python main.py --embedding-dim 100 --embedding-shape1 10 and we run on an error due to wrong hidden dimension:

   ret = torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [128 x 4608], m2: [9728 x 100] at /opt/conda/conda-bld/pytorch_1565272271120/work/aten/src/THC/generic/THCTensorMathBlas.cu:273

Now we change the hidden dimension to 4608 accordingly: python main.py --embedding-dim 100 --embedding-shape1 10 --hidden-size 4608. Now the model runs with an embedding size of 100 and 10x10 2D embeddings.

Adding new datasets

To run it on a new datasets, copy your dataset folder into the data folder and make sure your dataset split files have the name train.txt, valid.txt, and test.txt which contain tab separated triples of a knowledge graph. Then execute python wrangle_KG.py FOLDER_NAME, afterwards, you can use the folder name of your dataset in the dataset parameter.

Adding your own model

You can easily write your own knowledge graph model by extending the barebone model MyModel that can be found in the model.py file.

Quirks

There are some quirks of this framework.

  1. The model currently ignores data that does not fit into the specified batch size, for example if your batch size is 100 and your test data is 220, then 20 samples will be ignored. This is designed in that way to improve performance on small datasets. To test on the full test-data you can save the model checkpoint, load the model (with the --resume True variable) and then evaluate with a batch size that fits the test data (for 220 you could use a batch size of 110). Another solution is to just use a fitting batch size from the start, that is, you could train with a batch size of 110.

Issues

It has been noted that #6 WN18RR does contain 212 entities in the test set that do not appear in the training set. About 6.7% of the test set is affected. This means that most models will find it impossible to make any reasonable predictions for these entities. This will make WN18RR appear more difficult than it really is, but it should not affect the usefulness of the dataset. If all researchers compared to the same datasets the scores will still be comparable.

Logs

Some log files of the original research are included in the repo (logs.tar.gz). These log files are mostly unstructured in names and might be created from checkpoints so that it is difficult to comprehend them. Nevertheless, it might help to replicate the results or study the behavior of the training under certain conditions and thus I included them here.

Citation

If you found this codebase or our work useful please cite us:

@inproceedings{dettmers2018conve,
	Author = {Dettmers, Tim and Pasquale, Minervini and Pontus, Stenetorp and Riedel, Sebastian},
	Booktitle = {Proceedings of the 32th AAAI Conference on Artificial Intelligence},
	Title = {Convolutional 2D Knowledge Graph Embeddings},
	Url = {https://arxiv.org/abs/1707.01476},
	Year = {2018},
        pages  = {1811--1818},
  	Month = {February}
}



Owner
Tim Dettmers
Tim Dettmers
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022