Convolutional 2D Knowledge Graph Embeddings resources

Related tags

Deep LearningConvE
Overview

ConvE

Convolutional 2D Knowledge Graph Embeddings resources.

Paper: Convolutional 2D Knowledge Graph Embeddings

Used in the paper, but do not use these datasets for your research: FB15k and WN18. Please also note that the Kinship and Nations datasets have a high number of inverse relationships which makes them unsuitable for research. Nations has +95% inverse relationships and Kinship about 48%.

ConvE key facts

Predictive performance

Dataset MR MRR [email protected] [email protected] [email protected]
FB15k 64 0.75 0.87 0.80 0.67
WN18 504 0.94 0.96 0.95 0.94
FB15k-237 246 0.32 0.49 0.35 0.24
WN18RR 4766 0.43 0.51 0.44 0.39
YAGO3-10 2792 0.52 0.66 0.56 0.45
Nations 2 0.82 1.00 0.88 0.72
UMLS 1 0.94 0.99 0.97 0.92
Kinship 2 0.83 0.98 0.91 0.73

Run time performance

For an embedding size of 200 and batch size 128, a single batch takes on a GTX Titan X (Maxwell):

  • 64ms for 100,000 entities
  • 80ms for 1,000,000 entities

Parameter efficiency

Parameters ConvE/DistMult MRR ConvE/DistMult [email protected] ConvE/DistMult [email protected]
~5.0M 0.32 / 0.24 0.49 / 0.42 0.24 / 0.16
1.89M 0.32 / 0.23 0.49 / 0.41 0.23 / 0.15
0.95M 0.30 / 0.22 0.46 / 0.39 0.22 / 0.14
0.24M 0.26 / 0.16 0.39 / 0.31 0.19 / 0.09

ConvE with 8 times less parameters is still more powerful than DistMult. Relational Graph Convolutional Networks use roughly 32x more parameters to have the same performance as ConvE.

Installation

This repo supports Linux and Python installation via Anaconda.

  1. Install PyTorch using Anaconda.
  2. Install the requirements pip install -r requirements.txt
  3. Download the default English model used by spaCy, which is installed in the previous step python -m spacy download en
  4. Run the preprocessing script for WN18RR, FB15k-237, YAGO3-10, UMLS, Kinship, and Nations: sh preprocess.sh
  5. You can now run the model

Running a model

Parameters need to be specified by white-space tuples for example:

CUDA_VISIBLE_DEVICES=0 python main.py --model conve --data FB15k-237 \
                                      --input-drop 0.2 --hidden-drop 0.3 --feat-drop 0.2 \
                                      --lr 0.003 --preprocess

will run a ConvE model on FB15k-237.

To run a model, you first need to preprocess the data once. This can be done by specifying the --preprocess parameter:

CUDA_VISIBLE_DEVICES=0 python main.py --data DATASET_NAME --preprocess

After the dataset is preprocessed it will be saved to disk and this parameter can be omitted.

CUDA_VISIBLE_DEVICES=0 python main.py --data DATASET_NAME

The following parameters can be used for the --model parameter:

conve
distmult
complex

The following datasets can be used for the --data parameter:

FB15k-237
WN18RR
YAGO3-10
umls
kinship
nations

And here a complete list of parameters.

Link prediction for knowledge graphs

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
                        input batch size for training (default: 128)
  --test-batch-size TEST_BATCH_SIZE
                        input batch size for testing/validation (default: 128)
  --epochs EPOCHS       number of epochs to train (default: 1000)
  --lr LR               learning rate (default: 0.003)
  --seed S              random seed (default: 17)
  --log-interval LOG_INTERVAL
                        how many batches to wait before logging training
                        status
  --data DATA           Dataset to use: {FB15k-237, YAGO3-10, WN18RR, umls,
                        nations, kinship}, default: FB15k-237
  --l2 L2               Weight decay value to use in the optimizer. Default:
                        0.0
  --model MODEL         Choose from: {conve, distmult, complex}
  --embedding-dim EMBEDDING_DIM
                        The embedding dimension (1D). Default: 200
  --embedding-shape1 EMBEDDING_SHAPE1
                        The first dimension of the reshaped 2D embedding. The
                        second dimension is infered. Default: 20
  --hidden-drop HIDDEN_DROP
                        Dropout for the hidden layer. Default: 0.3.
  --input-drop INPUT_DROP
                        Dropout for the input embeddings. Default: 0.2.
  --feat-drop FEAT_DROP
                        Dropout for the convolutional features. Default: 0.2.
  --lr-decay LR_DECAY   Decay the learning rate by this factor every epoch.
                        Default: 0.995
  --loader-threads LOADER_THREADS
                        How many loader threads to use for the batch loaders.
                        Default: 4
  --preprocess          Preprocess the dataset. Needs to be executed only
                        once. Default: 4
  --resume              Resume a model.
  --use-bias            Use a bias in the convolutional layer. Default: True
  --label-smoothing LABEL_SMOOTHING
                        Label smoothing value to use. Default: 0.1
  --hidden-size HIDDEN_SIZE
                        The side of the hidden layer. The required size
                        changes with the size of the embeddings. Default: 9728
                        (embedding size 200).

To reproduce most of the results in the ConvE paper, you can use the default parameters and execute the command below:

CUDA_VISIBLE_DEVICES=0 python main.py --data DATASET_NAME

For the reverse model, you can run the provided file with the name of the dataset name and a threshold probability:

python inverse_model.py WN18RR 0.9

Changing the embedding size for ConvE

If you want to change the embedding size you can do that via the ``--embedding-dim parameter. However, for ConvE, since the embedding is reshaped as a 2D embedding one also needs to pass the first dimension of the reshaped embedding (--embedding-shape1`) while the second dimension is infered. When once changes the embedding size, the hidden layer size `--hidden-size` also needs to be different but it is difficult to determine before run time. The easiest way to determine the hidden size is to run the model, let it run on an error due to wrong shape, and then reshape according to the dimension in the error message.

Example: Change embedding size to be 100. We want 10x10 2D embeddings. We run python main.py --embedding-dim 100 --embedding-shape1 10 and we run on an error due to wrong hidden dimension:

   ret = torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [128 x 4608], m2: [9728 x 100] at /opt/conda/conda-bld/pytorch_1565272271120/work/aten/src/THC/generic/THCTensorMathBlas.cu:273

Now we change the hidden dimension to 4608 accordingly: python main.py --embedding-dim 100 --embedding-shape1 10 --hidden-size 4608. Now the model runs with an embedding size of 100 and 10x10 2D embeddings.

Adding new datasets

To run it on a new datasets, copy your dataset folder into the data folder and make sure your dataset split files have the name train.txt, valid.txt, and test.txt which contain tab separated triples of a knowledge graph. Then execute python wrangle_KG.py FOLDER_NAME, afterwards, you can use the folder name of your dataset in the dataset parameter.

Adding your own model

You can easily write your own knowledge graph model by extending the barebone model MyModel that can be found in the model.py file.

Quirks

There are some quirks of this framework.

  1. The model currently ignores data that does not fit into the specified batch size, for example if your batch size is 100 and your test data is 220, then 20 samples will be ignored. This is designed in that way to improve performance on small datasets. To test on the full test-data you can save the model checkpoint, load the model (with the --resume True variable) and then evaluate with a batch size that fits the test data (for 220 you could use a batch size of 110). Another solution is to just use a fitting batch size from the start, that is, you could train with a batch size of 110.

Issues

It has been noted that #6 WN18RR does contain 212 entities in the test set that do not appear in the training set. About 6.7% of the test set is affected. This means that most models will find it impossible to make any reasonable predictions for these entities. This will make WN18RR appear more difficult than it really is, but it should not affect the usefulness of the dataset. If all researchers compared to the same datasets the scores will still be comparable.

Logs

Some log files of the original research are included in the repo (logs.tar.gz). These log files are mostly unstructured in names and might be created from checkpoints so that it is difficult to comprehend them. Nevertheless, it might help to replicate the results or study the behavior of the training under certain conditions and thus I included them here.

Citation

If you found this codebase or our work useful please cite us:

@inproceedings{dettmers2018conve,
	Author = {Dettmers, Tim and Pasquale, Minervini and Pontus, Stenetorp and Riedel, Sebastian},
	Booktitle = {Proceedings of the 32th AAAI Conference on Artificial Intelligence},
	Title = {Convolutional 2D Knowledge Graph Embeddings},
	Url = {https://arxiv.org/abs/1707.01476},
	Year = {2018},
        pages  = {1811--1818},
  	Month = {February}
}



Owner
Tim Dettmers
Tim Dettmers
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022