A public available dataset for road boundary detection in aerial images

Overview

Topo-boundary

This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving.

Project page.

Topo-boundary is a publicly available benchmark dataset for topological road-boundary detection in aerial images. With an aerial image as the input, the evaluated method should predict the topological structure of road boundaries in the form of a graph.

This dataset is based on NYC Planimetric Database. Topo-boundary consists of 25,297 4-channel aerial images, and each aerial image has eight labels for different deep-learning tasks. More details about the dataset structure can be found in our paper. Follow the steps in the ./dataset to prepare the dataset.

We also provide the implementation code (including training and inference) based on PyTorch of 9 methods. Go to the Implementation section for details.

Update

  • May/22/2021 Topo_boundary is released. More time is needed to prepare ConvBoundary, DAGMapper and Enhanced-iCurb, thus currently these models are not open-sourced.

Platform information

Hardware info

GPU: one RTX3090 and one GTX1080Ti
CPU: i7-8700K
RAM: 32G
SSD: 256G + 1T

Software info

Ubuntu 18.04
CUDA 11.2
Docker 20.10.1

Make sure you have Docker installed.

File structure

Topo-Boundary
|
├── dataset
|   ├── data_split.json
|   ├── config_dir.yml
|   ├── get_data.bash
|   ├── get_checkpoints.bash
│   ├── cropped_tiff
│   ├── labels
|   ├── pretrain_checkpoints
│   └── scripts
|   
├── docker 
|
├── graph_based_baselines
|   ├── ConvBoundary
|   ├── DAGMApper
|   ├── Enhanced-iCurb
|   ├── iCurb
|   ├── RoadTracer
|   └── VecRoad 
|
├── segmentation_based_baselines
|   ├── DeepRoadMapper
|   ├── OrientationRefine
|   └── naive_baseline
|

Environment and Docker

Docker is used to set up the environment. If you are not familiar with Docker, refer to install Docker and Docker beginner tutorial for more information.

To build the docker image, run:

# go to the directory
cd ./docker
# optional
chmod +x ./build_image.sh
# build the docker image
./build_image.sh

Data and pretrain checkpoints preparation

Follow the steps in ./dataset to prepare the dataset and checkpoints trained by us.

Implementations

We provide the implementation code of 9 methods, including 3 segmentation-based baseline models, 5 graph-based baseline models, and an improved method based on our previous work iCurb. All methods are implemented with PyTorch by ourselves.

Note that the evaluation results of baselines may change after some modifications being made.

Evaluation metrics

We evaluate our implementations by 3 relaxed-pixel-level metrics, the self-defined Entropy Connectivity Metric (ECM), naive connectivity metric (proposed in ConvBoundary) and Average Path Length Similarity (APLS). For more details, refer to the supplementary document.

Related topics

Other research topics about line-shaped object detection could be inspiring to our task. Line-shaped object indicts target objects that have long but thin shapes, and the topology correctness of them also matters a lot. They usually have an irregular shape. E.g., road-network detection, road-lane detection, road-curb detection, line-segment detection, etc. The method to detect one line-shaped object could be adapted to another category without much modification.

To do

  • Acceleration
  • Fix bugs

Contact

For any questions, please send email to zxubg at connect dot ust dot hk.

Citation

@article{xu2021topo,
  title={Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={arXiv preprint arXiv:2103.17119},
  year={2021}
}

@article{xu2021icurb,
  title={iCurb: Imitation Learning-Based Detection of Road Curbs Using Aerial Images for Autonomous Driving},
  author={Xu, Zhenhua and Sun, Yuxiang and Liu, Ming},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={2},
  pages={1097--1104},
  year={2021},
  publisher={IEEE}
}
Owner
Zhenhua Xu
HKUST Ph.D. Candidate
Zhenhua Xu
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022