Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Overview

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

The performances of tree ensembles and neural networks on structured data are evaluated. In addition, the effectiveness of combining neural network and decision trees (such as random trees, histogram based gradient boosting, and xgboost) is investigated. Covariant shift, Random forest's inability to extrapolate, and data leakage are investigated.

A simple 2-layer Neural network outperformed xgboost, followed by random forests. The worst performance based on RMSE was obtained from the histogram based gradient boosting regressor.

Overall, the best rmse (0.220194)--about 4.04% improvement over the kaggle's leaderboard first place score -- was obtained by taking the average of the predictions by the neural network and xgboost regressor.

Key takeaways:

  1. Always start with a baseline

  2. Random forests are generally bad at extrapolating, hence, if there is a shift in the domain between the training input and the validation (or test) inputs, then the random forest model will perform rather poorly on the validation set(or test set).

rf_failure

The red portion of the plot above shows the extrapolation problem. The random forest was trained on the first 70% of the data and used to make predictions on thr full data including the last 30%. It fails because there is an obvious linear trend it was unable to properly capture. Moreover, the predictions by random forests are confined within the range of the training input labels, since random forests make predictions by taking the average of previously observed data. Hence, when the input for prediction is

  1. To improve the performance of random forests, you could attempt to find the columns or features on which the training and validation sets differ the most. You may drop the ones that least impacts the accuracy of the model. To achieve this, I trained a random forest that can tell if a given input is from a training set or validation set. This helped me determine if a validation set has the same or similar distribution as the training set. Lastly, I computed the feature importances. The feature importances for this model revealed the degree of dissimilarity of the features between the training and validation sets. The features with high feature importances are the most dissimilar between the sets. salesID and machineID were significantly different between the sets but impacts RMSE the least, hence they were dropped. Other common approaches taken to improve performance include: finding and removing the redundant features by making similarity plot (shown below), choosing more recent data for both the training and the validation sets.

similarity plot

  1. For forecasting tasks (time dependent targets), the validation set should not be arbitrarily chosen i.e train_test_split may not be your best option for splitting the data. Since you are looking to make predictions on future sales, your validation set should contain more recent data, so that if your model is able to do well on the validation set, then, you can be more confident about its predictions in the future.

  2. Data leakage should be investigated. Signs of data leakage include:

    • Unrealistically high level of performance on the test set
    • Apparently meaningless feature(s) scoring very high on feature importance
    • Partial dependence plots that do not make sense.

popularitypartial_dependence

Observations extracted from the notebook*

Towards the end of the productsize plot, we see an interesting trend. The auction price is at its lowest in the end. This group represent the missing values in our product size. Missing values constitute the greatest percentage in our ProductSize. However, recall that productsize is our third most important feature. So, how is it possible that a feature that is missing so often could be so important to the prediction? The answer may be tied to data leakage. We can theorize that the auctions with missing product size information were not really successful since they were sold at very low prices, as a resutlt, the size information were either removed or intentionally omitted. It is also possible that most of these data were collected after sales were made, and for the sales that were not great, the product size were simply left blank. The intention is completely debatable, it might be intended to provide clue as to the nature of the sale, however, such information can harm our model or even render it completely useless. Clearly, our model could be misled into thinking that missing product size is an indication of low price and as such will always predict a low price whenever the product size attribute is missing. A model afflicted with data leakage will not perform well in production.

  1. An histogram based gradient boosting regressor may not be the best for forecasting on time dependent data. It showed the least peroformance with an RMSE of 0.239826

  2. A simple Neural network can show superior performance on structured data. A 2-layer neural network in which the categorical variables (i.e features with cardinality < 1000) were handled using embeddings showed a 1.93% improvement in RMSE compared to the best random forest model. It also outperformed the xgboost regressor even after the hyperparameters were tuned.

  3. There is some benefit to be derived by using an ensemble of models. In this project, each time, the neural network was combined with any of the trees, a superior performance always ensues. The best performance was obtained from the combination of neural network and the xgboost model.

Owner
Mustapha Unubi Momoh
Python Developer| Data scientist
Mustapha Unubi Momoh
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021