IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

Overview

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具

2022.2.8 添加、修改内容

增加备份文件fuzz规则

修改备份文件大小判断方式(pip3 install hurry-filesize)

修改备份文件是否存在的判断规则

修改为多线程扫描,内存占用更小

经测试 1h1g vps 500线程可以拉满

python3 ihoneyBakFileScan_Modify.py -t 500 -f url.txt

python3 requests pip3.5

1. 简介

1.1 网站备份文件泄露可能造成的危害:
1. 网站存在备份文件:网站存在备份文件,例如数据库备份文件、网站源码备份文件等,攻击者利用该信息可以更容易得到网站权限,导致网站被黑。
2. 敏感文件泄露是高危漏洞之一,敏感文件包括数据库配置信息,网站后台路径,物理路径泄露等,此漏洞可以帮助攻击者进一步攻击,敞开系统的大门。
3. 由于目标备份文件较大(xxx.G),可能存在更多敏感数据泄露
4. 该备份文件被下载后,可以被用来做代码审计,进而造成更大的危害
5. 该信息泄露会暴露服务器的敏感信息,使攻击者能够通过泄露的信息进行进一步入侵。
1.2 依赖环境
开发环境:
python3   python3.5.3
pip3.5    pip 10.0.1
requests  2.19.1
安装第三方依赖库:
pip3.5 install requests
pip3 install hurry-filesize
1.3 工具核心:
1. 常见后缀:
   * '.rar', '.zip', '.gz', '.sql.gz', '.tar.gz' ...
2. 文件头识别:
   * rar:526172211a0700cf9073
   * zip:504b0304140000000800
   * gz:1f8b080000000000000b,也包括'.sql.gz',取'1f8b0800' 作为keyword
   * tar.gz: 1f8b0800
   * sql:每种导出方式有不同的文件头
       * Adminer:  
       * mysqldump:     
       * phpMyAdmin:
       * navicat:   
3. 数据库备份导出方式识别:
   * 导出方式                      文件头字符:                    前10个16进制字符:
   * mysqldump:                   -- MySQL dump:               2d2d204d7953514c
   * phpMyAdmin:                  -- phpMyAdmin SQL Dump:      2d2d207068704d794164
   * navicat:                     /* Navicat :                 2f2a0a204e617669636174
   * Adminer:                     -- Adminer x.x.x MySQL dump: 2d2d2041646d696e6572  (5月9日新增xxx.sql)
   * Navicat MySQL Data Transfer: /* Navicat:                  2f2a0a4e617669636174
   * 一种未知导出方式:               -- -------:                  2d2d202d2d2d2d2d2d2d
4. 根据域名自动生成相关扫描字典:
    ➜  ihoneyBakFileScan python3.5 ihoneyBakFileScan.py -u https://www.ihoney.net.cn
    [ ] https://www.ihoney.net.cn/__zep__/js.zip
    [ ] https://www.ihoney.net.cn/faisunzip.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/www.rar
    [ ] https://www.ihoney.net.cn/ihoney.rar
    [*] https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.zip
    [ ] https://www.ihoney.net.cn/www.zip
    [ ] https://www.ihoney.net.cn/ihoney.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/www.gz
    [ ] https://www.ihoney.net.cn/ihoney.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/www.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.sql.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/www.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.tar.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/www.sql
    [ ] https://www.ihoney.net.cn/ihoney.sql
5. 自动记录扫描成功的备份地址到以时间命名的文件
    例如 20180616_16-28-14.txt:
    https://www.ihoney.net.cn/ihoney.tar.gz  size:0M
    https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M

2. 使用方式

参数:
    -h --help      查看工具使用帮助
    -f --url-file  批量时指定存放url的文件,每行url需要指定http://或者https://,否则默认使用http://
    -t --thread    指定线程数,建议100
    -u --url       单个url扫描时指定url
    -d --dict-file 自定义扫描字典
使用:
    批量url扫描    python3.5 ihoneyBakFileScan.py -t 100 -f url.txt
    单个url扫描    python3.5 ihoneyBakFileScan.py -u https://www.ihoneysec.top/
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn -d dict.txt

3. ChangeLog:

[2018.04.20]  首发T00ls:支持rar,zip后缀备份文件头识别,根据域名自动生成相关扫描字典,自动记录扫描成功的备份地址到文件
[2018.04.26]
              在原本扫描成功的备份地址后增加了备份大小,以方便快速识别有效备份。
              增加了.sql文件识别,也是识别文件头的方式,文件头我目前检测到三种,分别是不同方式导出的:1.mysql,2.phpmyadmin,3.navicat。
[2018.05.19]  新增识别Adminer导出的两种格式:baidu.sql、baodu.sql.gz
[2018.05.31]  新增Navicat MySQL Data Transfer备份导出方式和另一种未知导出方式
[2018.06.16]  修复支持https站扫描,并从旧项目中抽出来独立作为一个项目
[2018.06.18]  从多线程加队列改为多进程加进程池,提升扫描速度

4. 联系

* 在使用工具的过程中遇到任何异常、问题,或者你有更好的建议都可以联系作者,一起将这款不出名的小工具完善下去。
* 联系方式: QQ 102505481
2018年06月18日22:51:11
Owner
VMsec
专注渗透测试。
VMsec
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021