Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Overview
Table of Content
  1. Introduction
  2. Datasets
  3. Getting Started
  4. Training & Evaluation

CPM: Color-Pattern Makeup Transfer

  • CPM is a holistic makeup transfer framework that outperforms previous state-of-the-art models on both light and extreme makeup styles.
  • CPM consists of an improved color transfer branch (based on BeautyGAN) and a novel pattern transfer branch.
  • We also introduce 4 new datasets (both real and synthesis) to train and evaluate CPM.
teaser.png
CPM can replicate both colors and patterns from a reference makeup style to another image.

Details of the dataset construction, model architecture, and experimental results can be found in our following paper:

@inproceedings{m_Nguyen-etal-CVPR21,
  author = {Thao Nguyen and Anh Tran and Minh Hoai},
  title = {Lipstick ain't enough: Beyond Color Matching for In-the-Wild Makeup Transfer},
  year = {2021},
  booktitle = {Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)}
}

Please CITE our paper whenever our datasets or model implementation is used to help produce published results or incorporated into other software.

Open In Colab - arXiv - project page


Datasets

We introduce 4 new datasets: CPM-Real, CPM-Synt-1, CPM-Synt-2, and Stickers datasets. Besides, we also use published LADN's Dataset & Makeup Transfer Dataset.

CPM-Real and Stickers are crawled from Google Image Search, while CPM-Synt-1 & 2 are built on Makeup Transfer and Stickers. (Click on dataset name to download)

Name #imgs Description -
CPM-Real 3895 real - makeup styles CPM-Real.png
CPM-Synt-1 5555 synthesis - makeup images with pattern segmentation mask ./imgs/CPM-Synt-1.png
CPM-Synt-2 1625 synthesis - triplets: makeup, non-makeup, ground-truth ./imgs/CPM-Synt-2.png
Stickers 577 high-quality images with alpha channel Stickers.png

Dataset Folder Structure can be found here.

By downloading these datasets, USER agrees:

  • to use these datasets for research or educational purposes only
  • to not distribute or part of these datasets in any original or modified form.
  • and to cite our paper whenever these datasets are employed to help produce published results.

Getting Started

Requirements
Installation
# clone the repo
git clone https://github.com/VinAIResearch/CPM.git
cd CPM

# install dependencies
conda env create -f environment.yml
Download pre-trained models
mkdir checkpoints
cd checkpoints
wget https://public.vinai.io/CPM_checkpoints/color.pth
wget https://public.vinai.io/CPM_checkpoints/pattern.pth
  • Download [PRNet pre-trained model] from Drive. Put it in PRNet/net-data
Usage

➡️ You can now try it in Google Colab Open in Colab

# Color+Pattern: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png

# Color Only: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png --color_only

# Pattern Only: 
CUDA_VISIBLE_DEVICES=0 python main.py --style ./imgs/style-1.png --input ./imgs/non-makeup.png --pattern_only

Result image will be saved in result.png

result
From left to right: Style, Input & Output

Training and Evaluation

As stated in the paper, the Color Branch and Pattern Branch are totally independent. Yet, they shared the same workflow:

  1. Data preparation: Generating texture_map of faces.

  2. Training

Please redirect to Color Branch or Pattern Branch for further details.


🌿 If you have trouble running the code, please read Trouble Shooting before creating an issue. Thank you 🌿

Trouble Shooting
  1. [Solved] ImportError: libGL.so.1: cannot open shared object file: No such file or directory:

    sudo apt update
    sudo apt install libgl1-mesa-glx
    
  2. [Solved] RuntimeError: Expected tensor for argument #1 'input' to have the same device as tensor for argument #2 'weight'; but device 1 does not equal 0 (while checking arguments for cudnn_convolution) Add CUDA VISIBLE DEVICES before .py. Ex:

    CUDA_VISIBLE_DEVICES=0 python main.py
    
  3. [Solved] RuntimeError: cuda runtime error (999) : unknown error at /opt/conda/conda-bld/pytorch_1595629403081/work/aten/src/THC/THCGeneral.cpp:47

    sudo rmmod nvidia_uvm
    sudo modprobe nvidia_uvm
    
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022