PyTorch implementation of normalizing flow models

Overview

Normalizing Flows

This is a PyTorch implementation of several normalizing flows, including a variational autoencoder. It is used in the articles A Gradient Based Strategy for Hamiltonian Monte Carlo Hyperparameter Optimization and Resampling Base Distributions of Normalizing Flows.

Implemented Flows

Methods of Installation

The latest version of the package can be installed via pip

pip install --upgrade git+https://github.com/VincentStimper/normalizing-flows.git

If you want to use a GPU, make sure that PyTorch is set up correctly by by following the instructions at the PyTorch website.

To run the example notebooks clone the repository first

git clone https://github.com/VincentStimper/normalizing-flows.git

and then install the dependencies.

pip install -r requirements_examples.txt
Comments
  • Replication of comparable glow with papers

    Replication of comparable glow with papers

    Hi, Thanks for developing this package. I find it very neat and flexible and would like to use it for my research. I noticed that in the paper "Resampling Base Distributions of Normalizing Flows", the bpd of your glow can reach 3.2~3.3, which is comparable to the original paper.

    I was wondering if it is possible to share your training scripts and details to train glow on cifar10 to achieve the above bpd. The current example notebook is too sketchy and only results in bpd of 3.8. Thanks very much!

    opened by prclibo 1
  • Changed ActNorm flag to buffer to allow saving

    Changed ActNorm flag to buffer to allow saving

    Without it being a buffer, when you load a model and sample from it, the flow thinks it is the first run through so overwrites all the trained ActNorm parameters.

    opened by arc82 1
  • Fix deprecation warning

    Fix deprecation warning

    Fixes the deprecation warning documented in https://github.com/VincentStimper/normalizing-flows/issues/12.


    Sanity check: Running this before the change:

    import normflows as nf
    import torch
    
    torch.manual_seed(42)
    
    flow = nf.NormalizingFlow(
        nf.distributions.DiagGaussian(1, trainable=False),
        [
            nf.flows.AutoregressiveRationalQuadraticSpline(1, 1, 1),
            nf.flows.LULinearPermute(1)
        ]
    )
    
    with torch.no_grad():
        samples_flow, _ = flow.sample(4)
    
    print(samples_flow)
    

    gives:

    tensor([[0.4528],
            [0.6410],
            [0.5200],
            [0.5567]])
    

    After the change, the output stays the same.

    opened by timothygebhard 0
  • Sampling from flow raises deprecation warning

    Sampling from flow raises deprecation warning

    Running the following minimal example:

    import normflows as nf
    import torch
    
    torch.manual_seed(42)
    
    flow = nf.NormalizingFlow(
        nf.distributions.DiagGaussian(1, trainable=False),
        [
            nf.flows.AutoregressiveRationalQuadraticSpline(1, 1, 1),
            nf.flows.LULinearPermute(1)
        ]
    )
    
    with torch.no_grad():
        samples_flow, _ = flow.sample(4)
    
    print(samples_flow)
    

    raises a UserWarning about an upcoming deprecation:

    /Users/timothy/Desktop/normalizing-flows/normflows/flows/mixing.py:437: UserWarning: torch.triangular_solve is deprecated in favor of torch.linalg.solve_triangular and will be removed in a future PyTorch release.
    torch.linalg.solve_triangular has its arguments reversed and does not return a copy of one of the inputs.
    X = torch.triangular_solve(B, A).solution
    should be replaced with
    X = torch.linalg.solve_triangular(A, B). (Triggered internally at  /Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/native/BatchLinearAlgebra.cpp:2189.)
      outputs, _ = torch.triangular_solve(
    

    I will submit a PR shortly that fixes the issue 🙂

    opened by timothygebhard 0
  • Vberenz/mkdocs

    Vberenz/mkdocs

    Added mkdocs structure, and refactored the docstrings (and applied black)

    to install the dependencies for documentation building:

    pip install -e ".[docs]"
    

    To see the doc:

    mkdocs serve
    

    This starts a live server. Modifications of the documentation are rendered live (excluded the modications to docstrings)

    To build the docs:

    mkdocs build
    

    this will create the site folder (including index.html)

    To expend the docs:

    Markdown files can be added in the docs folder, then the "nav" section of the mkdocs.yml file has to be updated, e.g.

    nav:
      - about: index.md
      - API: references.md
      - my other page: mymarkdown.md
    
    • good to know: markdown can be used in the docstrings.
    • apparently, deploying the documentation online on github after built is as simple as calling mkdocs gh-deploy (I did not try it yet)

    I still need to do:

    • continuous build on github (documentation is rebuilt and deployed at each merge into master)
    • a correction pass on the docstrings (I updated them, but did not check them one by one yet)
    • the layout is not so nice (especially for the API), needs to be improved
    • apparently mkdocs allows to display jupyter notebooks, I need to dig
    opened by vincentberenz 0
  • feat: add optional gradient clipping to HMC flow

    feat: add optional gradient clipping to HMC flow

    Add the option to clip the gradient of the target log prob within HMC. For some target distributions, the log prob may have some very large gradients which can cause numerical instability - the gradient clipping can help with this.

    opened by lollcat 0
  • Added minor fixes for bugs and warnings

    Added minor fixes for bugs and warnings

    This commit made three changes to the original repo:

    1. Fixes the warning regarding the 'is' keyword:
    /home/donglin/Github/normalizing-flows/normflow/nets.py:45: SyntaxWarning: "is" with a literal. Did you mean "=="?
      if output_fn is "sigmoid":
    /home/donglin/Github/normalizing-flows/normflow/nets.py:47: SyntaxWarning: "is" with a literal. Did you mean "=="?
      elif output_fn is "relu":
    /home/donglin/Github/normalizing-flows/normflow/nets.py:49: SyntaxWarning: "is" with a literal. Did you mean "=="?
      elif output_fn is "tanh":
    /home/donglin/Github/normalizing-flows/normflow/nets.py:51: SyntaxWarning: "is" with a literal. Did you mean "=="?
      elif output_fn is "clampexp":
    
    1. Fixes the warning regarding 'torch.qr':
    /home/donglin/Github/normalizing-flows/normflow/flows.py:616: UserWarning: torch.qr is deprecated in favor of torch.linalg.qr and will be removed in a future PyTorch release.
    The boolean parameter 'some' has been replaced with a string parameter 'mode'.
    Q, R = torch.qr(A, some)
    should be replaced with
    Q, R = torch.linalg.qr(A, 'reduced' if some else 'complete') (Triggered internally at  /opt/conda/conda-bld/pytorch_1623448278899/work/aten/src/ATen/native/BatchLinearAlgebra.cpp:1940.)
      Q = torch.qr(torch.randn(self.num_channels, self.num_channels))[0]
    
    1. Eliminated the "nf.util.ToDevice" call during the data pre-processing in glow.ipynb
    opened by Donglin-Wang2 0
  • RuntimeError: output with shape [32] doesn't match the broadcast shape [1, 32]

    RuntimeError: output with shape [32] doesn't match the broadcast shape [1, 32]

    Hi, when doing experiments, I'd suggest doing some other tutorials, for example for the ClassCondFlow, as while trying to one on my own, I keep encountering this error.

    opened by maulberto3 0
  • Normalizing Flow vs Normalizing Flow VAE behavior

    Normalizing Flow vs Normalizing Flow VAE behavior

    I can't help but to wonder why the NormalizingFlow class use the flows' inverse method when computing forward_kl, but, on the contrary, when using the NormalizingFlowVAE, it uses the flows' forward method.

    This way, when trying to fit MNIST with NormalizingFlow, when training and passing a batch of say (64, 784) images I get the following error:

         34 for i in range(len(self.flows) - 1, -1, -1):
         35     z, log_det = self.flows[i].inverse(z)
    ---> 36     log_q += log_det
         37 log_q += self.q0.log_prob(z)
         38 return -torch.mean(log_q)
    
    RuntimeError: output with shape [64] doesn't match the broadcast shape [1, 64]
    

    Any help/suggestion?

    opened by maulberto3 0
  • Inconsistency between log_q and log_p in Encoder and NormalizingFlowVAE

    Inconsistency between log_q and log_p in Encoder and NormalizingFlowVAE

    In NormalizingFlowVAE class in core.py, this line says that the encoder outputs log_q:

    z, log_q = self.q0(x, num_samples=num_samples)

    Suppose that, as in this example, the encoder Gaussian (q0) is parameterized by an MLP. Looking at distributions.encoder.py source code, the forward method of NNDiagGaussian class says that it outputs log_p:

    return z, log_p

    Inconsistency or not?

    opened by maulberto3 0
  • NormalizingFlow class in core.py does not provide context in forward_kld

    NormalizingFlow class in core.py does not provide context in forward_kld

    Thank you for a repo that's easy to handle with a normalizing flow of one's choice!

    I would like to implement a normalizing flow that optimizes multiple target distributions at once depending on the context I would provide to it. Yet, currently, afai, no context can be providided in the .forward_kld method of the NormalizingFlow class.

    Would be great if that's added!

    Cheers,

    Yves

    opened by ybernaerts 3
  • Decoupled sampling and generation interfaces

    Decoupled sampling and generation interfaces

    Hi, this PR added some new interface to get better control during sampling, e.g. to repeatedly generate on same latent code when training the model. Please check if it is useful as a merge:)

    opened by prclibo 0
Releases(v1.5)
  • v1.5(Dec 21, 2022)

    A rendered documentation is added to the repository, which is available on https://vincentstimper.github.io/normalizing-flows/.

    Test were added for several flow modules, which can be run via pytest. With these new tests, several bugs were detected and fixed. The current coverage is about 61%. More tests will be added in the future as well as automated testing and coverage analysis on GitHub.

    Moreover, the code is adapted to the syntax of newer PyTorch Versions.

    Source code(tar.gz)
    Source code(zip)
  • v1.4(Jul 26, 2022)

    The package is now available on PyPI, which means that it can just be installed with

    pip install normflows
    

    from now on. The code was reformatted to conform to the black coding style.

    Moreover, the following fixes and additions are included:

    • The computation of the alpha-divergence objective was corrected.
    • A bug regarding sampling from the mixture of Gaussian base distribution was fixed.
    • A flow layer to warp periodic variables was added.
    • The dependency from the Residual Flow repository was removed.
    Source code(tar.gz)
    Source code(zip)
  • v1.2(Apr 5, 2022)

    The code was reorganized to be more hierarchical and readable. Also all required functionality for Neural Spline Flows were added to the repository to remove the dependency on the original Neural Spline Flow repository.

    Furthermore, the following features were introduced:

    • Class to reverse a flow layer
    • Class to build a chain of flow layers
    • Affine Masked Autoregressive Flows (MAF)
    • Circular Neural Spline Flows
    • Neural Spline Flows with circular and non-circular coordinates
    Source code(tar.gz)
    Source code(zip)
  • v1.1(Feb 6, 2022)

  • v1.0(Nov 25, 2021)

    Normalizing flow library comprising the most popular flow architectures, among them Real NVP, Glow, Neural Spline Flow, and Residual Flow.

    Source code(tar.gz)
    Source code(zip)
Owner
Vincent Stimper
PhD student in Machine Learning at the University of Cambridge and the Max Planck Institute for Intelligent Systems
Vincent Stimper
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021