Introducing neural networks to predict stock prices

Overview

IntroNeuralNetworks in Python: A Template Project

forthebadge made-with-python

GitHub license PRs Welcome

IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how one can use neural networks to predict stock prices. It is built with the goal of allowing beginners to understand the fundamentals of how neural network models are built and go through the entire workflow of machine learning. This model is in no way sophisticated, so do improve upon this base project in any way.

The core steps involved is: download stock price data from Yahoo Finance, preprocess the dataframes according to specifications for neural network libraries and finally train the neural network model and backtest over historical data.

This model is not meant to be used to live trade stocks with. However, with further extensions, this model can definitely be used to support your trading strategies.

I hope you find this project useful in your journey as a trader or a machine learning engineer. Personally, this is my first major machine learning and python project, so I'll appreciate if you leave a star.

As a disclaimer, this is a purely educational project. Any backtested results do not guarantee performance in live trading. Do live trading at your own risk. This guide and further analysis has been cross-posted in my blog, Engineer Quant

Contents

Overview

The overall workflow for this project is as such:

  1. Acquire the stock price data - this will give us our features for the model.
  2. Preprocess the data - make the train and test datasets.
  3. Use the neural network to learn from the training data.
  4. Backtest the model across a date range.
  5. Make useful stock price predictions
  6. Supplement your trading strategies with the predictions

Although this is very general, it is essentially what you need to build your own machine learning or neural network model.

Getting Started

For those of you that do not want to learn about the construction of the model (although I highly suggest you to), clone and download the project, unzip it to your preferred folder and run the following code in your computer.

pip install -r requirements.txt
python LSTM_model.py

It's as simple as that!

Requirements

For those who want a more details manual, this program is built in Python 3.6. If you are using an earlier version of Python, like Python 3.x, you will run into problems with syntax when it comes to f strings. I do suggest that you update to Python 3.6.

pip install -r requirements.txt

Stock Price Data

Now we come to the most dreaded part of any machine learning project: data acquisiton and data preprocessing. As tedious and hard as it might be, it is vital to have high quality data to feed into your model. As the saying goes "Garbage in. Garbage out." This is most applicable to machine learning models, as your model is only as good as the data it is fed. Processing the data comes in two parts: downloading the data, and forming our datasets for the model. Thanks to Yahoo Finance API, downloading the stock price data is relatively simple (sadly I doubt not for long).

To download the stock price data, we use pandas_datareader which after a while did not work. So we use this fix and use fix_yahoo_finance. If this fails (maybe in the near future), you can just download the stock data directly from Yahoo for free and save it as stock_price.csv.

Preprocessing

Once we have the stock price data for the stocks we are going to predict, we now need to create the training and testing datasets.

Preparing Train Dataset

The goal for our training dataset is to have rows of a given length (the number of prices used to predict) along with the correct prediction to evaluate our model against. I have given the user the option of choosing how much of the stock price data you want to use for your training data when calling the Preprocessing class. Generating the training data is done quite simply using numpy.arrays and a for loop. You can perform this by running:

Preprocessing.get_train(seq_len)

Preparing Test Dataset

The test dataset is prepared in precisely the same way as the training dataset, just that the length of the data is different. This is done with the following code:

Preprocessing.get_test(seq_len)

Neural Network Models

Since the main goal of this project is to get acquainted with machine learning and neural networks, I will explain what models I have used and why they may be efficient in predicting stock prices. If you want a more detailed explanation of neural networks, check out my blog.

Multilayer Perceptron Model

A multilayer perceptron is the most basic of neural networks that uses backpropagation to learn from the training dataset. If you want more details about how the multilayer perceptron works, do read this article.

LSTM Model

The benefit of using a Long Short Term Memory neural network is that there is an extra element of long term memory, where the neural network has data about the data in prior layers as a 'memory' which allows the model to find the relationships between the data itself and between the data and output. Again for more details, please read this article

Backtesting

My backtest system is simple in the sense that it only evaluates how well the model predicts the stock price. It does not actually consider how to trade based on these predictions (that is the topic of developing trading strategies using this model). To run just the backtesting, you will need to run

back_test(strategy, seq_len, ticker, start_date, end_date, dim)

The dim variable is the dimensions of the data set you want and it is necessary to successfully train the models.

Stock Predictions

Now that your model has been trained and backtested, we can use it to make stock price predictions. In order to make stock price predictions, you need to download the current data and use the predict method of keras module. Run the following code after training and backtesting the model:

data = pdr.get_data_yahoo("AAPL", "2017-12-19", "2018-01-03")
stock = data["Adj Close"]
X_predict = np.array(stock).reshape((1, 10)) / 200
print(model.predict(X_predict)*200)

Extensions

As mentioned before, this projected is highly extendable, and here some ideas for improving the project.

Getting Data

Getting data is pretty standard using Yahoo Finance. However, you may want to look into clustering data in terms of trends of stocks (maybe by sector, or if you want to be really precise, use k-means clustering?).

Neural Network Model

This neural network can be improved in many ways:

  1. Tuning hyperparameters: find the optimal hyperparameters that gives the best prediction
  2. Backtesting: Make the backtesting system more robust (I have left certain important aspects out for you to figure). Maybe include buying and shorting?
  3. Try different Neural Networks: There are plenty of options and see which works best for your stocks.

Supporting Trade

As I said earlier, this model can be used to support trading by using this prediction in your trading strategy. Examples include:

  1. Simple long short strategy: you buy if the prediction is higher, and vice versa
  2. Intraday Trading: if you can get your hands on minute data or even tick data, you can use this predictor to trade.
  3. Statistical Arbitrage: use can also use the predictions of various stock prices to find the correlation between stocks.

Contributing

Feel free to fork this and submit PRs. I am open and grateful for any suggestions or bug fixes. Hope you enjoy this project!


For more content like this, check out my academic blog at https://medium.com/engineer-quant

Owner
Vivek Palaniappan
Keen on finding effective solutions to complex problems - looking into the broad intersection between engineering, finance and AI.
Vivek Palaniappan
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022