(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

Related tags

Deep LearningClassSR
Overview

ClassSR

(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

Paper

Authors: Xiangtao Kong, Hengyuan Zhao, Yu Qiao, Chao Dong

Dependencies

Codes

  • Our codes version based on BasicSR.

How to test a single branch

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the testing datasets (DIV2K_valid).

  2. Download the divide_val.log and move it to .codes/data_scripts/.

  3. Generate simple, medium, hard (class1, class2, class3) validation data.

cd codes/data_scripts
python extract_subimages_test.py
python divide_subimages_test.py
  1. Download pretrained models and move them to ./experiments/pretrained_models/ folder.

  2. Run testing for a single branch.

cd codes
python test.py -opt options/test/test_FSRCNN.yml
python test.py -opt options/test/test_CARN.yml
python test.py -opt options/test/test_SRResNet.yml
python test.py -opt options/test/test_RCAN.yml
  1. The output results will be sorted in ./results.

How to test ClassSR

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the testing datasets (DIV8K). Test8K contains the images (index 1401-1500) from DIV8K. Test2K/4K contain the images (index 1201-1300/1301-1400) from DIV8K which are downsampled to 2K and 4K resolution.

  2. Download pretrained models and move them to ./experiments/pretrained_models/ folder.

  3. Run testing for ClassSR.

cd codes
python test_ClassSR.py -opt options/test/test_ClassSR_FSRCNN.yml
python test_ClassSR.py -opt options/test/test_ClassSR_CARN.yml
python test_ClassSR.py -opt options/test/test_ClassSR_SRResNet.yml
python test_ClassSR.py -opt options/test/test_ClassSR_RCAN.yml
  1. The output results will be sorted in ./results.

How to train a single branch

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the training datasets(DIV2K) and validation dataset(Set5).

  2. Download the divide_train.log and move it to .codes/data_scripts/.

  3. Generate simple, medium, hard (class1, class2, class3) training data.

cd codes/data_scripts
python data_augmentation.py
python extract_subimages_train.py
python divide_subimages_train.py
  1. Run training for a single branch (default branch1, the simplest branch).
cd codes
python train.py -opt options/train/train_FSRCNN.yml
python train.py -opt options/train/train_CARN.yml
python train.py -opt options/train/train_SRResNet.yml
python train.py -opt options/train/train_RCAN.yml
  1. The experiments will be sorted in ./experiments.

How to train ClassSR

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the training datasets (DIV2K) and validation dataset(DIV2K_valid, index 801-810).

  2. Generate training data (the all data(1.59M) in paper).

cd codes/data_scripts
python data_augmentation.py
python extract_subimages_ClassSR.py
  1. Download pretrained models(pretrained branches) and move them to ./experiments/pretrained_models/ folder.

  2. Run training for ClassSR.

cd codes
python train_ClassSR.py -opt options/train/train_ClassSR_FSRCNN.yml
python train_ClassSR.py -opt options/train/train_ClassSR_CARN.yml
python train_ClassSR.py -opt options/train/train_ClassSR_SRResNet.yml
python train_ClassSR.py -opt options/train/train_ClassSR_RCAN.yml
  1. The experiments will be sorted in ./experiments.

Contact

Email: [email protected]

Owner
Xiangtao Kong
Xiangtao Kong
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022