A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

Overview

A Light and Fast Face Detector for Edge Devices

Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended to use LFD instead !!! Visit LFD Repo here. This repo will not be maintained from now on.

Recent Update

  • 2019.07.25 This repos is first online. Face detection code and trained models are released.
  • 2019.08.15 This repos is formally released. Any advice and error reports are sincerely welcome.
  • 2019.08.22 face_detection: latency evaluation on TX2 is added.
  • 2019.08.25 face_detection: RetinaFace-MobileNet-0.25 is added for comparison (both accuracy and latency).
  • 2019.09.09 LFFD is ported to NCNN (link) and MNN (link) by SyGoing, great thanks to SyGoing.
  • 2019.09.10 face_detection: important bug fix: vibration offset should be subtracted by shift in data iterator. This bug may result in lower accuracy, inaccurate bbox prediction and bbox vibration in test phase. We will upgrade v1 and v2 as soon as possible (should have higher accuracy and more stable).
  • 2019.09.17 face_detection: model v2 is upgraded! After fixing the bug, we have fine-tuned the old v2 model. The accuracy on WIDER FACE is improved significantly! Please try new v2.
  • 2019.09.18 pedestrian_detection: preview version of model v1 for Caltech Pedestrian Dataset is released.
  • 2019.09.23 head_detection: model v1 for brainwash dataset is released.
  • 2019.10.02 license_plate_detection: model v1 for CCPD dataset is released. (The accuracy is very high and the latency is very short! Have a try.)
  • 2019.10.02 Currently, we have provided some application-oriented detectors. Subsequently, we will put most energy to next generation framework for single-class detection. Any feedback is welcome.
  • 2019.10.16 face_detection: the preview of PyTorch version is ready (link). Any feedback is welcome.
  • 2019.10.16 Tips: data preparation is important, irrational values of (x,y,w,h) may introduce nan in training; we trained models with convs followed by BNs. But we found that the convergence is not stable, and can not reach a good point.
  • 2019.11.08 face_detection: caffe version of LFFD is provided by vicwer (great thanks). Guys who are familiar with caffe can navigate to /face_detection/caffemodel for details.
  • 2020.03.27 license_plate_detection: model v1_small for CCPD dataset is released. v1_small has much less parameters than v1, hence it is much faster. The AP of v1_small is 0.982 (vs v1-0.989). Please check README.md. Besides, a commercial-ready license plate recognition repo which adopted LFFD as the detector is hightly recommended!

Introduction

This repo releases the source code of paper "LFFD: A Light and Fast Face Detector for Edge Devices". Our paper presents a light and fast face detector (LFFD) for edge devices. LFFD considerably balances both accuracy and latency, resulting in small model size, fast inference speed while achieving excellent accuracy. Understanding the essence of receptive field makes detection networks interpretable.

In practical, we have deployed it in cloud and edge devices (like NVIDIA Jetson series and ARM-based embedding system). The comprehensive performance of LFFD is robust enough to support our applications.

In fact, our method is a general detection framework that applicable to one class detection, such as face detection, pedestrian detection, head detection, vehicle detection and so on. In general, an object class, whose average ratio of the longer side and the shorter side is less than 5, is appropriate to apply our framework for detection.

Several practical advantages:

  1. large scale coverage, and easy to extend to larger scales by adding more layers without much latency gain.
  2. detect small objects (as small as 10 pixels) in images with extremely large resolution (8K or even larger) in only one inference.
  3. easy backbone with very common operators makes it easy to deploy anywhere.

Accuracy and Latency

We train LFFD on train set of WIDER FACE benchmark. All methods are evaluated on val/test sets under the SIO schema (please refer to the paper for details).

  • Accuracy on val set of WIDER FACE (The values in () are results from the original papers):
Method Easy Set Medium Set Hard Set
DSFD 0.949(0.966) 0.936(0.957) 0.850(0.904)
PyramidBox 0.937(0.961) 0.927(0.950) 0.867(0.889)
S3FD 0.923(0.937) 0.907(0.924) 0.822(0.852)
SSH 0.921(0.931) 0.907(0.921) 0.702(0.845)
FaceBoxes 0.840 0.766 0.395
FaceBoxes3.2× 0.798 0.802 0.715
LFFD 0.910 0.881 0.780
  • Accuracy on test set of WIDER FACE (The values in () are results from the original papers):
Method Easy Set Medium Set Hard Set
DSFD 0.947(0.960) 0.934(0.953) 0.845(0.900)
PyramidBox 0.926(0.956) 0.920(0.946) 0.862(0.887)
S3FD 0.917(0.928) 0.904(0.913) 0.821(0.840)
SSH 0.919(0.927) 0.903(0.915) 0.705(0.844)
FaceBoxes 0.839 0.763 0.396
FaceBoxes3.2× 0.791 0.794 0.715
LFFD 0.896 0.865 0.770
  • Accuracy on FDDB:
Method Disc ROC curves score
DFSD 0.984
PyramidBox 0.982
S3FD 0.981
SSH 0.977
FaceBoxes3.2× 0.905
FaceBoxes 0.960
LFFD 0.973

In the paper, three hardware platforms are used for latency evaluation: NVIDIA GTX TITAN Xp, NVIDIA TX2 and Rasberry Pi 3 Model B+ (ARM A53).

We report the latency of inference only (for NVIDIA hardwares, data transfer is included), excluding pre-processing and post-processing. The batchsize is set to 1 for all evaluations.

  • Latency on NVIDIA GTX TITAN Xp (MXNet+CUDA 9.0+CUDNN7.1):
Resolution-> 640×480 1280×720 1920×1080 3840×2160
DSFD 78.08ms(12.81 FPS) 187.78ms(5.33 FPS) 392.82ms(2.55 FPS) 1562.50ms(0.64 FPS)
PyramidBox 50.51ms(19.08 FPS) 143.34ms(6.98 FPS) 331.93ms(3.01 FPS) 1344.07ms(0.74 FPS)
S3FD 21.75ms(45.95 FPS) 55.73ms(17.94 FPS) 119.53ms(8.37 FPS) 471.31ms(2.21 FPS)
SSH 22.44ms(44.47 FPS) 55.29ms(18.09 FPS) 118.43ms(8.44 FPS) 463.10ms(2.16 FPS)
FaceBoxes3.2× 6.80ms(147.00 FPS) 12.96ms(77.19 FPS) 25.37ms(39.41 FPS) 111.98ms(8.93 FPS)
LFFD 7.60ms(131.40 FPS) 16.37ms(61.07 FPS) 31.27ms(31.98 FPS) 87.79ms(11.39 FPS)
  • Latency on NVIDIA TX2 (MXNet+CUDA 9.0+CUDNN7.1) presented in the paper:
Resolution-> 160×120 320×240 640×480
FaceBoxes3.2× 11.20ms(89.29 FPS) 19.62ms(50.97 FPS) 72.74ms(13.75 FPS)
LFFD 7.30ms(136.99 FPS) 19.64ms(50.92 FPS) 64.70ms(15.46 FPS)
  • Latency on Respberry Pi 3 Model B+ (ncnn) presented in the paper:
Resolution-> 160×120 320×240 640×480
FaceBoxes3.2× 167.20ms(5.98 FPS) 686.19ms(1.46 FPS) 3232.26ms(0.31 FPS)
LFFD 118.45ms(8.44 FPS) 409.19ms(2.44 FPS) 4114.15ms(0.24 FPS)

On NVIDIA platform, TensorRT is the best choice for inference. So we conduct additional latency evaluations using TensorRT (the latency is dramatically decreased!!!). As for ARM based platform, we plan to use MNN and Tengine for latency evaluation. Details can be found in the sub-project face_detection.

Getting Started

We implement the proposed method using MXNet Module API.

Prerequirements (global)

  • Python>=3.5
  • numpy>=1.16 (lower versions should work as well, but not tested)
  • MXNet>=1.4.1 (install guide)
  • cv2=3.x (pip3 install opencv-python==3.4.5.20, other version should work as well, but not tested)

Tips:

  • use MXNet with cudnn.
  • build numpy from source with OpenBLAS. This will improve the training efficiency.
  • make sure cv2 links to libjpeg-turbo, not libjpeg. This will improve the jpeg decode efficiency.

Sub-directory description

  • face_detection contains the code of training, evaluation and inference for LFFD, the main content of this repo. The trained models of different versions are provided for off-the-shelf deployment.
  • head_detection contains the trained models for head detection. The models are obtained by the proposed general one class detection framework.
  • pedestrian_detection contains the trained models for pedestrian detection. The models are obtained by the proposed general one class detection framework.
  • vehicle_detection contains the trained models for vehicle detection. The models are obtained by the proposed general one class detection framework.
  • ChasingTrainFramework_GeneralOneClassDetection is a simple wrapper based on MXNet Module API for general one class detection.

Installation

  1. Download the repo:
git clone https://github.com/YonghaoHe/A-Light-and-Fast-Face-Detector-for-Edge-Devices.git
  1. Refer to the corresponding sub-project for detailed usage.

Citation

If you benefit from our work in your research and product, please kindly cite the paper

@inproceedings{LFFD,
title={LFFD: A Light and Fast Face Detector for Edge Devices},
author={He, Yonghao and Xu, Dezhong and Wu, Lifang and Jian, Meng and Xiang, Shiming and Pan, Chunhong},
booktitle={arXiv:1904.10633},
year={2019}
}

To Do List

Contact

Yonghao He

E-mails: [email protected] / [email protected]

If you are interested in this work, any innovative contributions are welcome!!!

Internship is open at NLPR, CASIA all the time. Send me your resumes!

Owner
YonghaoHe
Assistant Professor
YonghaoHe
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
LBK 26 Dec 28, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021