1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

Overview

About The Project

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection toolbox based on PyTorch. You can click here for more details about this competition.

Method Description

We built our approach on FCOS, A simple and strong anchor-free object detector, with ResNeSt as our backbone, to detect embedded and isolated formulas. We employed ATSS as our sampling strategy instead of random sampling to eliminate the effects of sample imbalance. Moreover, we observed and revealed the influence of different FPN levels on the detection result. Generalized Focal Loss is adopted to our loss. Finally, with a series of useful tricks and model ensembles, our method was ranked 1st in the MFD task.

Random Sampling(left) ATSS(right) Random Sampling(left) ATSS(right)

Getting Start

Prerequisites

  • Linux or macOS (Windows is in experimental support)
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • MMCV

This project is based on MMDetection-v2.7.0, mmcv-full>=1.1.5, <1.3 is needed. Note: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

Installation

  1. Install PyTorch and torchvision following the official instructions , e.g.,

    pip install pytorch torchvision -c pytorch

    Note: Make sure that your compilation CUDA version and runtime CUDA version match. You can check the supported CUDA version for precompiled packages on the PyTorch website.

    E.g.1 If you have CUDA 10.1 installed under /usr/local/cuda and would like to install PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.

    pip install pytorch cudatoolkit=10.1 torchvision -c pytorch

    E.g. 2 If you have CUDA 9.2 installed under /usr/local/cuda and would like to install PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.

    pip install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch

    If you build PyTorch from source instead of installing the prebuilt pacakge, you can use more CUDA versions such as 9.0.

  2. Install mmcv-full, we recommend you to install the pre-build package as below.

    pip install mmcv-full==latest+torch1.6.0+cu101 -f https://download.openmmlab.com/mmcv/dist/index.html

    See here for different versions of MMCV compatible to different PyTorch and CUDA versions. Optionally you can choose to compile mmcv from source by the following command

    git clone https://github.com/open-mmlab/mmcv.git
    cd mmcv
    MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
    cd ..

    Or directly run

    pip install mmcv-full
  3. Install build requirements and then compile MMDetection.

    pip install -r requirements.txt
    pip install tensorboard
    pip install ensemble-boxes
    pip install -v -e .  # or "python setup.py develop"

Usage

Data Preparation

Firstly, Firstly, you need to put the image files and the GT files into two separate folders as below.

Tr01
├── gt
│   ├── 0001125-color_page02.txt
│   ├── 0001125-color_page05.txt
│   ├── ...
│   └── 0304067-color_page08.txt
├── img
    ├── 0001125-page02.jpg
    ├── 0001125-page05.jpg
    ├── ...
    └── 0304067-page08.jpg

Secondly, run data_preprocess.py to get coco format label. Remember to change 'img_path', 'txt_path', 'dst_path' and 'train_path' to your own path.

python ./tools/data_preprocess.py

The new structure of data folder will become,

Tr01
├── gt
│   ├── 0001125-color_page02.txt
│   ├── 0001125-color_page05.txt
│   ├── ...
│   └── 0304067-color_page08.txt
│
├── gt_icdar
│   ├── 0001125-color_page02.txt
│   ├── 0001125-color_page05.txt
│   ├── ...
│   └── 0304067-color_page08.txt
│   
├── img
│   ├── 0001125-page02.jpg
│   ├── 0001125-page05.jpg
│   ├── ...
│   └── 0304067-page08.jpg
│
└── train_coco.json

Finally, change 'data_root' in ./configs/base/datasets/formula_detection.py to your path.

Train

  1. train with single gpu on ResNeSt50

    python tools/train.py configs/gfl/gfl_s50_fpn_2x_coco.py --gpus 1 --work-dir ${Your Dir}
  2. train with 8 gpus on ResNeSt101

    ./tools/dist_train.sh configs/gfl/gfl_s101_fpn_2x_coco.py 8 --work-dir ${Your Dir}

Inference

Run tools/test_formula.py

python tools/test_formula.py configs/gfl/gfl_s101_fpn_2x_coco.py ${checkpoint path} 

It will generate a 'result' file at the same level with work-dir in default. You can specify the output path of the result file in line 231.

Model Ensemble

Specify the paths of the results in tools/model_fusion_test.py, and run

python tools/model_fusion_test.py

Evaluation

evaluate.py is the officially provided evaluation tool. Run

python evaluate.py ${GT_DIR} ${CSV_Pred_File}

Note: GT_DIR is the path of the original data folder which contains both the image and the GT files. CSV_Pred_File is the path of the final prediction csv file.

Result

Train on Tr00, Tr01, Va00 and Va01, and test on Ts01. Some results are as follows, F1-score

Method embedded isolated total
ResNeSt50-DCN 95.67 97.67 96.03
ResNeSt101-DCN 96.11 97.75 96.41

Our final result, that was ranked 1st place in the competition, was obtained by fusing two Resnest101+GFL models trained with two different random seeds and all labeled data. The final ranking can be seen in our technical report.

License

This project is licensed under the MIT License. See LICENSE for more details.

Citations

@article{zhong20211st,
  title={1st Place Solution for ICDAR 2021 Competition on Mathematical Formula Detection},
  author={Zhong, Yuxiang and Qi, Xianbiao and Li, Shanjun and Gu, Dengyi and Chen, Yihao and Ning, Peiyang and Xiao, Rong},
  journal={arXiv preprint arXiv:2107.05534},
  year={2021}
}
@article{GFLli2020generalized,
  title={Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection},
  author={Li, Xiang and Wang, Wenhai and Wu, Lijun and Chen, Shuo and Hu, Xiaolin and Li, Jun and Tang, Jinhui and Yang, Jian},
  journal={arXiv preprint arXiv:2006.04388},
  year={2020}
}
@inproceedings{ATSSzhang2020bridging,
  title={Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection},
  author={Zhang, Shifeng and Chi, Cheng and Yao, Yongqiang and Lei, Zhen and Li, Stan Z},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={9759--9768},
  year={2020}
}
@inproceedings{FCOStian2019fcos,
  title={Fcos: Fully convolutional one-stage object detection},
  author={Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9627--9636},
  year={2019}
}
@article{solovyev2019weighted,
  title={Weighted boxes fusion: ensembling boxes for object detection models},
  author={Solovyev, Roman and Wang, Weimin and Gabruseva, Tatiana},
  journal={arXiv preprint arXiv:1910.13302},
  year={2019}
}
@article{ResNestzhang2020resnest,
  title={Resnest: Split-attention networks},
  author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Lin, Haibin and Zhang, Zhi and Sun, Yue and He, Tong and Mueller, Jonas and Manmatha, R and others},
  journal={arXiv preprint arXiv:2004.08955},
  year={2020}
}
@article{MMDetectionchen2019mmdetection,
  title={MMDetection: Open mmlab detection toolbox and benchmark},
  author={Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Xu, Jiarui and others},
  journal={arXiv preprint arXiv:1906.07155},
  year={2019}
}

Acknowledgements

Owner
yuxzho
yuxzho
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022