MutualGuide is a compact object detector specially designed for embedded devices

Overview

Introduction

MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two key features.

Firstly, the Mutual Guidance mecanism assigns labels to the classification task based on the prediction on the localization task, and vice versa, alleviating the misalignment problem between both tasks; Secondly, the teacher-student prediction disagreements guides the knowledge transfer in a feature-based detection distillation framework, thereby reducing the performance gap between both models.

For more details, please refer to our ACCV paper and BMVC paper.

Planning

  • Add RepVGG backbone.
  • Add ShuffleNetV2 backbone.
  • Add TensorRT transform code for inference acceleration.
  • Add draw function to plot detection results.
  • Add custom dataset training (annotations in XML format).
  • Add Transformer backbone.
  • Add BiFPN neck.

Benchmark

  • Without knowledge distillation:
Backbone Resolution APval
0.5:0.95
APval
0.5
APval
0.75
APval
small
APval
medium
APval
large
Speed V100
(ms)
Weights
ShuffleNet-1.0 512x512 35.8 52.9 38.6 19.8 40.1 48.3 8.3 Google
ResNet-34 512x512 44.1 62.3 47.6 26.5 50.2 58.3 6.9 Google
ResNet-18 512x512 42.0 60.0 45.3 25.4 47.1 56.0 4.4 Google
RepVGG-A2 512x512 44.2 62.5 47.5 27.2 50.3 57.2 5.3 Google
RepVGG-A1 512x512 43.1 61.3 46.6 26.6 49.3 55.9 4.4 Google
  • With knowledge distillation:
Backbone Resolution APval
0.5:0.95
APval
0.5
APval
0.75
APval
small
APval
medium
APval
large
Speed V100
(ms)
Weights
ResNet-18 512x512 42.9 60.7 46.2 25.4 48.8 57.2 4.4 Google
RepVGG-A1 512x512 44.0 62.1 47.3 27.6 49.9 57.9 4.4 Google

Remarks:

  • The precision is measured on the COCO2017 Val dataset.
  • The inference runtime is measured by Pytorch framework (without TensorRT acceleration) on a Tesla V100 GPU, and the post-processing time (e.g., NMS) is not included (i.e., we measure the model inference time).
  • To dowload from Baidu cloud, go to this link (password: dvz7).

Datasets

First download the VOC and COCO dataset, you may find the sripts in data/scripts/ helpful. Then create a folder named datasets and link the downloaded datasets inside:

$ mkdir datasets
$ ln -s /path_to_your_voc_dataset datasets/VOCdevkit
$ ln -s /path_to_your_coco_dataset datasets/coco2017

Remarks:

  • For training on custom dataset, first modify the dataset path XMLroot and categories XML_CLASSES in data/xml_dataset.py. Then apply --dataset XML.

Training

For training with Mutual Guide:

$ python3 train.py --neck ssd --backbone vgg16    --dataset VOC --size 320 --multi_level --multi_anchor --mutual_guide --pretrained
                          fpn            resnet34           COCO       512
                          pafpn          repvgg-A2          XML
                                         shufflenet-1.0

For knowledge distillation using PDF-Distil:

$ python3 distil.py --neck ssd --backbone vgg11    --dataset VOC --size 320 --multi_level --multi_anchor --mutual_guide --pretrained --kd pdf
                           fpn            resnet18           COCO       512
                           pafpn          repvgg-A1          XML
                                          shufflenet-0.5

Remarks:

  • For training without MutualGuide, just remove the --mutual_guide;
  • For training on custom dataset, convert your annotations into XML format and use the parameter --dataset XML. An example is given in datasets/XML/;
  • For knowledge distillation with traditional MSE loss, just use parameter --kd mse;
  • The default folder to save trained model is weights/.

Evaluation

Every time you want to evaluate a trained network:

$ python3 test.py --neck ssd --backbone vgg11    --dataset VOC --size 320 --trained_model path_to_saved_weights --multi_level --multi_anchor --pretrained --draw
                         fpn            resnet18           COCO       512
                         pafpn          repvgg-A1          XML
                                        shufflenet-0.5

Remarks:

  • It will directly print the mAP, AP50 and AP50 results on VOC2007 Test or COCO2017 Val;
  • Add parameter --draw to draw detection results. They will be saved in draw/VOC/ or draw/COCO/ or draw/XML/;
  • Add --trt to activate TensorRT acceleration.

Citing us

Please cite our papers in your publications if they help your research:

@InProceedings{Zhang_2020_ACCV,
    author    = {Zhang, Heng and Fromont, Elisa and Lefevre, Sebastien and Avignon, Bruno},
    title     = {Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection},
    booktitle = {Proceedings of the Asian Conference on Computer Vision (ACCV)},
    month     = {November},
    year      = {2020}
}

@InProceedings{Zhang_2021_BMVC,
    author    = {Zhang, Heng and Fromont, Elisa and Lefevre, Sebastien and Avignon, Bruno},
    title     = {PDF-Distil: including Prediction Disagreements in Feature-based Distillation for object detection},
    booktitle = {Proceedings of the British Machine Vision Conference (BMVC)},
    month     = {November},
    year      = {2021}
}

Acknowledgement

This project contains pieces of code from the following projects: mmdetection, ssd.pytorch, rfbnet and yolox.

StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022