A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

Overview

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks.

The purpose of this project is to promote the research and application of semi-supervised learning on pixel-wise vision tasks. PixelSSL provides two major features:

  • Interface for implementing new semi-supervised algorithms
  • Template for encapsulating diverse computer vision tasks

As a result, the SSL algorithms integrated in PixelSSL are compatible with all task codes inherited from the given template.

In addition, PixelSSL provides the benchmarks for validating semi-supervised learning algorithms for some pixel-level tasks, which now include semantic segmentation.

News

  • [Dec 25 2020] PixelSSL v0.1.4 is Released!
    🎄 Merry Christmas! 🎄
    v0.1.4 supports the CutMix semi-supervised learning algorithm for pixel-wise classification.

  • [Nov 06 2020] PixelSSL v0.1.3 is Released!
    v0.1.3 supports the CCT semi-supervised learning algorithm for pixel-wise classification.

  • [Oct 28 2020] PixelSSL v0.1.2 is Released!
    v0.1.2 supports PSPNet and its SSL results for semantic segmentation task (check here).

    [More]

Supported Algorithms and Tasks

We are actively updating this project.
The SSL algorithms and demo tasks supported by PixelSSL are summarized in the following table:

Algorithms / Tasks Segmentation Other Tasks
SupOnly v0.1.0 Coming Soon
MT [1] v0.1.0 Coming Soon
AdvSSL [2] v0.1.0 Coming Soon
S4L [3] v0.1.1 Coming Soon
CCT [4] v0.1.3 Coming Soon
GCT [5] v0.1.0 Coming Soon
CutMix [6] v0.1.4 Coming Soon

[1] Mean Teachers are Better Role Models: Weight-Averaged Consistency Targets Improve Semi-Supervised Deep Learning Results
      Antti Tarvainen, and Harri Valpola. NeurIPS 2017.

[2] Adversarial Learning for Semi-Supervised Semantic Segmentation
      Wei-Chih Hung, Yi-Hsuan Tsai, Yan-Ting Liou, Yen-Yu Lin, and Ming-Hsuan Yang. BMVC 2018.

[3] S4L: Self-Supervised Semi-Supervised Learning
      Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. ICCV 2019.

[4] Semi-Supervised Semantic Segmentation with Cross-Consistency Training
      Yassine Ouali, Céline Hudelot, and Myriam Tami. CVPR 2020.

[5] Guided Collaborative Training for Pixel-wise Semi-Supervised Learning
      Zhanghan Ke, Di Qiu, Kaican Li, Qiong Yan, and Rynson W.H. Lau. ECCV 2020.

[6] Semi-Supervised Semantic Segmentation Needs Strong, Varied Perturbations
      Geoff French, Samuli Laine, Timo Aila, Michal Mackiewicz, and Graham Finlayson. BMVC 2020.

Installation

Please refer to the Installation document.

Getting Started

Please follow the Getting Started document to run the provided demo tasks.

Tutorials

We provide the API document and some tutorials for using PixelSSL.

License

This project is released under the Apache 2.0 license.

Acknowledgement

We thank City University of Hong Kong and SenseTime for their support to this project.

Citation

This project is extended from our ECCV 2020 paper Guided Collaborative Training for Pixel-wise Semi-Supervised Learning (GCT). If this codebase or our method helps your research, please cite:

@InProceedings{ke2020gct,
  author = {Ke, Zhanghan and Qiu, Di and Li, Kaican and Yan, Qiong and Lau, Rynson W.H.},
  title = {Guided Collaborative Training for Pixel-wise Semi-Supervised Learning},
  booktitle = {European Conference on Computer Vision (ECCV)},
  month = {August},
  year = {2020},
}

Contact

This project is currently maintained by Zhanghan Ke (@ZHKKKe).
If you have any questions, please feel free to contact [email protected].

Comments
  • Question about the input size of images during inference time.

    Question about the input size of images during inference time.

    Dear author: I have a question about the inference setting. In this section: https://github.com/ZHKKKe/PixelSSL/blob/2e85e12c1db5b24206bfbbf2d7f6348ae82b2105/task/sseg/data.py#L102

        def _val_prehandle(self, image, label):
            sample = {self.IMAGE: image, self.LABEL: label}
            composed_transforms = transforms.Compose([
                FixScaleCrop(crop_size=self.args.im_size),
                Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
                ToTensor()])
    
            transformed_sample = composed_transforms(sample)
    
            return transformed_sample[self.IMAGE], transformed_sample[self.LABEL]
    

    I find that you crop the image as the input and calculate the metrics on the cropped image. However, I think we should use the whole image to calculate the metric. Based on this setting, the supervised full baseline is 2~3% mIoU lower than the raw performance. Could you explain it?

    opened by charlesCXK 16
  • some questions about Paper

    some questions about Paper "Guided Collaborative Training"

    great work. Thanks for your amazing codebase. I have some questions about this paper "Guided Collaborative Training for Pixel-wise Semi-Supervised Learning"

    1.I'm wondering if I can just use max score of a pixel as an evaluation criterion without Flaw Detector in semantic segmentation task? If so, how would it work if I use score directly, have you ever done such experiment?

    1. Is Flaw Correction Constraint forcing the error to 0 to correct the result of semantic segmentation? This loss, not quite understand what it means.
    opened by czy341181 8
  • Add implementation for Semi-supervised Semantic Segmentation via Strong-weak Dual-branch Network

    Add implementation for Semi-supervised Semantic Segmentation via Strong-weak Dual-branch Network

    Thanks for your sharing and the repo is quite helpful for me to understand the work in SSL segmentation. If possible, could you add the implementation of Semi-supervised Semantic Segmentation via Strong-weak Dual-branch Network (ECCV 2020), which is a simply dual branch network. It's a quite easy and inituitive idea but I could not reproduce the results with deeplabv2. It would be great if you could add this into the repo.

    opened by syorami 5
  • CUDA out of memory

    CUDA out of memory

    Hi ZHKKKE,

    First of all, thank you for your work. Currently, I retrain the gct by PSPNet with the ResNet-101 backbone in Pascal VOC, and use the parameter of im_size=513, batch_size=4 with 4 gpus. However, i am getting the error of insufficient memory. I retrained other methods you offered by using the parameter of im_size=513, batch_size=4 with 4 gpus and can get the accuracy provided by README.md.

    I want to know how you train the gct with 4 GPUs? Save memory by changing im_size=513 to im_size=321?Or is there any other way?

    Thank you and regards

    opened by Rainfor1 4
  • A question about ASPP

    A question about ASPP

    Thanks for your great work for tackling the pixel-wise semi-supervised tasks. I am currently following it and I have the following question.

    Should the returned value of 'out' at https://github.com/ZHKKKe/PixelSSL/blob/master/task/sseg/module/deeplab_v2.py#L85 be out of the for loop? Otherwise, the ASPP only adds the outputs of dilation rates 6 and 12.

    Thanks in advance : )

    opened by tianzhuotao 3
  • More data splits of VOC

    More data splits of VOC

    Dear author: Thank you for sharing! Could you share more data splits of your ECCV paper, such as data split of 1/16, 1/4, 1/2 of VOC? We want to run experiments based on more splits and make a comparison with the numbers reported in the paper. Thank you!

    opened by charlesCXK 2
  • FlawDetector In 3D version

    FlawDetector In 3D version

    Hi there, thanks for your work, it's very inspiring!

    And now I want to use the job in my project, but in 3D. I found that the FlawDetector for 2D is stacked of some conv layers with kernel size is 4 stride is 1 or 2 or some stuff.

    But my input size is 256, 256 after the self.conv3_1 will cause errors. So I have to modify kernel size from 4 to 3, and now before interpolating the feature map, the x's shape is (1, 1, 8, 8, 8), but to interpolating to shape of (1, 1, 16, 256, 256), the gap between the x and the task_pred seems too large.

    But in 2D mode, I set the input is (3, 256, 256) while the num_classes is 14, the x will be interpolated from (1, 1, 8, 8) to (1, 1, 256, 256). Is is reasonable?

    Thanks a lot!

    opened by DISAPPEARED13 0
  • About the performance of PSPNet.

    About the performance of PSPNet.

    Hello, thanks for your perfect work. I have a question about the performance of PSPNet , when i use PSPNet alone in my own dataset and my own code and trainning with 1/2 samples, the miou could reach about 68%. But when I change to your code and trainningwith suponly, the miou is only 60% . Could you please tell me what may be the reason for this.

    opened by liyanping0317 1
  • Is there a bug in task/sseg/func.py  metrics?

    Is there a bug in task/sseg/func.py metrics?

    Hi, ZHKKKe, Thank you for your excellent code.

    I found a suspected bug in task/sseg/func.py.

    In the function metrics, you reset all meters named acc_str/acc_class_str/mIoU_str/fwIoU_str. if meters.has_key(acc_str): meters.reset(acc_str) if meters.has_key(acc_class_str): meters.reset(acc_class_str) if meters.has_key(mIoU_str): meters.reset(mIoU_str) if meters.has_key(fwIoU_str): meters.reset(fwIoU_str) When I test your pre-trained model deeplabv2_pascalvoc_1-8_suponly.ckpt, I found the Validation metrics logging the whole confusion matrix. Shouldn‘t we count the single image acc/mIoU independently?

    I'm not sure whether my speculation is right, could you help me?

    opened by HHuiwen 1
  • Splits of Cityscapes ...

    Splits of Cityscapes ...

    Hi, thanks for your nice work!

    I have noticed that you only give us the data split of VOC2012, will you offer us the splits of cityscapes dataset?

    And from your scripts, The labeled data used in your experiments only samples in the order of names from the txt file, https://github.com/ZHKKKe/PixelSSL/blob/ce192034355ae6a77e47d2983d9c9242df60802a/task/sseg/dataset/PascalVOC/tool/random_sublabeled_samples.py#L21 labeled_num = int(len(samples) * labeled_ratio + 1) labeled_list = samples[:labeled_num]

    opened by ghost 3
Releases(v0.1.4)
Owner
Zhanghan Ke
PhD Candidate @ CityU
Zhanghan Ke
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022