A benchmark for the task of translation suggestion

Overview

WeTS: A Benchmark for Translation Suggestion

Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire documents translated by machine translation (MT) has been proven to play a significant role in post editing (PE). WeTS is a benchmark data set for TS, which is annotated by expert translators. WeTS contains corpus(train/dev/test) for four different translation directions, i.e., English2German, German2English, Chinese2English and English2Chinese.


Contents

Data


WeTS is a benchmark dataset for TS, where all the examples are annotated by expert translators. As far as we know, this is the first golden corpus for TS. The statistics about WeTS are listed in the following table:

Translation Direction Train Valid Test
English2German 14,957 1000 1000
German2English 11,777 1000 1000
English2Chinese 15,769 1000 1000
Chinese2English 21,213 1000 1000

For corpus in each direction, the data is organized as:
direction.split.src: the source-side sentences
direction.split.mask: the masked translation sentences, the placeholder is "<MASK>"
direction.split.tgt: the predicted suggestions, the test set for English2Chinese has three references for each example

direction: En2De, De2En, Zh2En, En2Zh
split: train, dev, test

Models


We release the pre-trained NMT models which are used to generate the MT sentences. Additionally, the released NMT models can be used to generate synthetic corpus for TS, which can improve the final performance dramatically.Detailed description about the way of generating synthetic corpus can be found in our paper.

The released models can be downloaded at:

Download the models

and the password is "2iyk"

For inference with the released model, we can:

sh inference_*direction*.sh 

direction can be: en2de, de2en, en2zh, zh2en

Get Started


data preprocessing

sh process.sh 

pre-training

Codes for the first-phase pre-training are not included in this repo, as we directly utilized the codes of XLM (https://github.com/facebookresearch/XLM) with little modiafication. And we did not achieve much gains with the first-phase pretraining.

The second-phase pre-training:

sh preptraining.sh

fine-tuning

sh finetuning.sh

Codes in this repo is mainly forked from fairseq (https://github.com/pytorch/fairseq.git)

Citation


Please cite the following paper if you found the resources in this repository useful.

@article{yang2021wets,
  title={WeTS: A Benchmark for Translation Suggestion},
  author={Yang, Zhen and Zhang, Yingxue and Li, Ernan and Meng, Fandong and Zhou, Jie},
  journal={arXiv preprint arXiv:2110.05151},
  year={2021}
}

LICENCE


See LICENCE

Owner
zhyang
zhyang
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023