Oriented Response Networks, in CVPR 2017

Overview

Oriented Response Networks

[Home] [Project] [Paper] [Supp] [Poster]

illustration

Torch Implementation

The torch branch contains:

  • the official torch implementation of ORN.
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • Torch7

Getting started

You can setup everything via a single command wget -O - https://git.io/vHCMI | bash or do it manually in case something goes wrong:

  1. install the dependencies (required by the demo code):

  2. clone the torch branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b torch --single-branch ORN.torch
    cd ORN.torch
    export DIR=$(pwd)
  3. install ORN:

    cd $DIR/install
    # install the CPU/GPU/CuDNN version ORN.
    bash install.sh
  4. unzip the MNIST dataset:

    cd $DIR/demo/datasets
    unzip MNIST
  5. run the MNIST-Variants demo:

    cd $DIR/demo
    # you can modify the script to test different hyper-parameters
    bash ./scripts/Train_MNIST.sh

Trouble shooting

If you run into 'cudnn.find' not found, update Torch7 to the latest version via cd <TORCH_DIR> && bash ./update.sh then re-install everything.

More experiments

CIFAR 10/100

You can train the OR-WideResNet model (converted from WideResNet by simply replacing Conv layers with ORConv layers) on CIFAR dataset with WRN.

dataset=cifar10_original.t7 model=or-wrn widen_factor=4 depth=40 ./scripts/train_cifar.sh

With exactly the same settings, ORN-augmented WideResNet achieves state-of-the-art result while using significantly fewer parameters.

CIFAR

Network Params CIFAR-10 (ZCA) CIFAR-10 (mean/std) CIFAR-100 (ZCA) CIFAR-100 (mean/std)
DenseNet-100-12-dropout 7.0M - 4.10 - 20.20
DenseNet-190-40-dropout 25.6M - 3.46 - 17.18
WRN-40-4 8.9M 4.97 4.53 22.89 21.18
WRN-28-10-dropout 36.5M 4.17 3.89 20.50 18.85
WRN-40-10-dropout 55.8M - 3.80 - 18.3
ORN-40-4(1/2) 4.5M 4.13 3.43 21.24 18.82
ORN-28-10(1/2)-dropout 18.2M 3.52 2.98 19.22 16.15

Table.1 Test error (%) on CIFAR10/100 dataset with flip/translation augmentation)

ImageNet

ILSVRC2012

The effectiveness of ORN is further verified on large scale data. The OR-ResNet-18 model upgraded from ResNet-18 yields significant better performance when using similar parameters.

Network Params Top1-Error Top5-Error
ResNet-18 11.7M 30.614 10.98
OR-ResNet-18 11.4M 28.916 9.88

Table.2 Validation error (%) on ILSVRC-2012 dataset.

You can use facebook.resnet.torch to train the OR-ResNet-18 model from scratch or finetune it on your data by using the pre-trained weights.

-- To fill the model with the pre-trained weights:
model = require('or-resnet.lua')({tensorType='torch.CudaTensor', pretrained='or-resnet18_weights.t7'})

A more specific demo notebook of using the pre-trained OR-ResNet to classify images can be found here.

PyTorch Implementation

The pytorch branch contains:

  • the official pytorch implementation of ORN (alpha version supports 1x1/3x3 ARFs with 4/8 orientation channels only).
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • PyTorch

Getting started

  1. install the dependencies (required by the demo code):

    • tqdm: pip install tqdm
    • pillow: pip install Pillow
  2. clone the pytorch branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b pytorch --single-branch ORN.pytorch
    cd ORN.pytorch
    export DIR=$(pwd)
  3. install ORN:

    cd $DIR/install
    bash install.sh
  4. run the MNIST-Variants demo:

    cd $DIR/demo
    # train ORN on MNIST-rot
    python main.py --use-arf
    # train baseline CNN
    python main.py

Caffe Implementation

The caffe branch contains:

  • the official caffe implementation of ORN (alpha version supports 1x1/3x3 ARFs with 4/8 orientation channels only).
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • Caffe

Getting started

  1. install the dependency (required by the demo code):

  2. clone the caffe branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b caffe --single-branch ORN.caffe
    cd ORN.caffe
    export DIR=$(pwd)
  3. install ORN:

    # modify Makefile.config first
    # compile ORN.caffe
    make clean && make -j"$(nproc)" all
  4. run the MNIST-Variants demo:

    cd $DIR/examples/mnist
    bash get_mnist.sh
    # train ORN & CNN on MNIST-rot
    bash train.sh

Note

Due to implementation differences,

  • upgrading Conv layers to ORConv layers can be done by adding an orn_param
  • num_output of ORConv layers should be multipied by nOrientation of ARFs

Example:

layer {
  type: "Convolution"
  name: "ORConv" bottom: "Data" top: "ORConv"
  # add this line to replace regular filters with ARFs
  orn_param {orientations: 8}
  param { lr_mult: 1 decay_mult: 2}
  convolution_param {
    # this means 10 ARF feature maps
    num_output: 80
    kernel_size: 3
    stride: 1
    pad: 0
    weight_filler { type: "msra"}
    bias_filler { type: "constant" value: 0}
  }
}

Check the MNIST demo prototxt (and its visualization) for more details.

Citation

If you use the code in your research, please cite:

@INPROCEEDINGS{Zhou2017ORN,
    author = {Zhou, Yanzhao and Ye, Qixiang and Qiu, Qiang and Jiao, Jianbin},
    title = {Oriented Response Networks},
    booktitle = {CVPR},
    year = {2017}
}
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022