VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

Related tags

Deep LearningVGGVox
Overview

VGGVox models for speaker identification and verification

This directory contains code to import and evaluate the speaker identification and verification models pretrained on the VoxCeleb(1 & 2) datasets as described in the following papers (1 and 2):

[1] A. Nagrani*, J. S. Chung*, A. Zisserman, VoxCeleb: a large-scale speaker identification dataset, 
INTERSPEECH, 2017

[2] J. S. Chung*, A. Nagrani*, A. Zisserman, VoxCeleb2: Deep Speaker Recognition, 
INTERSPEECH, 2018

The models trained for verification map voice spectrograms to a compact Euclidean space where distances directly correspond to a measure of speaker similarity. Such embeddings can be used for tasks such as speaker verification, clustering and diarisation.

Prerequisites

[1] Matlab

[2] Matconvnet.

Installing

The easiest way to use the code in this repo is with the vl_contrib package manager. To install, follow these steps:

  1. Install and compile matconvnet by following instructions here.

  2. Run:

vl_contrib install VGGVox
vl_contrib setup VGGVox
  1. You can then run the demo scripts provided to import and test the models. There are three short demo scripts. The first two scripts are for identification and verification models trained on VoxCeleb1. The third script imports and test a verification model trained on VoxCeleb2. These demos demonstrate how to evaluate the models directly on .wav audio files:
demo_vggvox_identif 
demo_vggvox_verif 
demo_vggvox_verif_voxceleb2

Models

The matconvnet models can also be downloaded directly using the following links:

Model trained for identification on VoxCeleb1

Model trained for verification on VoxCeleb1

Model trained for verification on VoxCeleb2 (this is a resnet based model)

Datasets

These models have been pretrained on the VoxCeleb (1&2) datasets. VoxCeleb contains over 1 million utterances for 7,000+ celebrities, extracted from videos uploaded to YouTube. The speakers span a wide range of different ethnicities, accents, professions and ages. The dataset can be downloaded directly from here.

Citation

If you use this code then please cite:

@InProceedings{Nagrani17,
  author       = "Nagrani, A. and Chung, J.~S. and Zisserman, A.",
  title        = "VoxCeleb: a large-scale speaker identification dataset",
  booktitle    = "INTERSPEECH",
  year         = "2017",
}


@InProceedings{Nagrani17,
  author       = "Chung, J.~S. and Nagrani, A. and Zisserman, A.",
  title        = "VoxCeleb2: Deep Speaker Recognition",
  booktitle    = "INTERSPEECH",
  year         = "2018",
}

Fixes

Note - since we take only the magnitude of the spectrogram, the matlab functions here to extract spectrograms provide mirrored spectrograms (along the freq axis). This has been fixed in later models where we chop the spectrograms in half before feeding them into the network.

R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022