XGBoost + Optuna

Overview

AutoXGB

XGBoost + Optuna: no brainer

  • auto train xgboost directly from CSV files
  • auto tune xgboost using optuna
  • auto serve best xgboot model using fastapi

NOTE: PRs are currently not accepted. If there are issues/problems, please create an issue.

Installation

Install using pip

pip install autoxgb

Usage

Training a model using AutoXGB is a piece of cake. All you need is some tabular data.

Parameters

###############################################################################
### required parameters
###############################################################################

# path to training data
train_filename = "data_samples/binary_classification.csv"

# path to output folder to store artifacts
output = "output"

###############################################################################
### optional parameters
###############################################################################

# path to test data. if specified, the model will be evaluated on the test data
# and test_predictions.csv will be saved to the output folder
# if not specified, only OOF predictions will be saved
# test_filename = "test.csv"
test_filename = None

# task: classification or regression
# if not specified, the task will be inferred automatically
# task = "classification"
# task = "regression"
task = None

# an id column
# if not specified, the id column will be generated automatically with the name `id`
# idx = "id"
idx = None

# target columns are list of strings
# if not specified, the target column be assumed to be named `target`
# and the problem will be treated as one of: binary classification, multiclass classification,
# or single column regression
# targets = ["target"]
# targets = ["target1", "target2"]
targets = ["income"]

# features columns are list of strings
# if not specified, all columns except `id`, `targets` & `kfold` columns will be used
# features = ["col1", "col2"]
features = None

# categorical_features are list of strings
# if not specified, categorical columns will be inferred automatically
# categorical_features = ["col1", "col2"]
categorical_features = None

# use_gpu is boolean
# if not specified, GPU is not used
# use_gpu = True
# use_gpu = False
use_gpu = True

# number of folds to use for cross-validation
# default is 5
num_folds = 5

# random seed for reproducibility
# default is 42
seed = 42

# number of optuna trials to run
# default is 1000
# num_trials = 1000
num_trials = 100

# time_limit for optuna trials in seconds
# if not specified, timeout is not set and all trials are run
# time_limit = None
time_limit = 360

# if fast is set to True, the hyperparameter tuning will use only one fold
# however, the model will be trained on all folds in the end
# to generate OOF predictions and test predictions
# default is False
# fast = False
fast = False

Python API

To train a new model, you can run:

from autoxgb import AutoXGB


# required parameters:
train_filename = "data_samples/binary_classification.csv"
output = "output"

# optional parameters
test_filename = None
task = None
idx = None
targets = ["income"]
features = None
categorical_features = None
use_gpu = True
num_folds = 5
seed = 42
num_trials = 100
time_limit = 360
fast = False

# Now its time to train the model!
axgb = AutoXGB(
    train_filename=train_filename,
    output=output,
    test_filename=test_filename,
    task=task,
    idx=idx,
    targets=targets,
    features=features,
    categorical_features=categorical_features,
    use_gpu=use_gpu,
    num_folds=num_folds,
    seed=seed,
    num_trials=num_trials,
    time_limit=time_limit,
    fast=fast,
)
axgb.train()

CLI

Train the model using the autoxgb train command. The parameters are same as above.

autoxgb train \
 --train_filename datasets/30train.csv \
 --output outputs/30days \
 --test_filename datasets/30test.csv \
 --use_gpu

You can also serve the trained model using the autoxgb serve command.

autoxgb serve --model_path outputs/mll --host 0.0.0.0 --debug

To know more about a command, run:

`autoxgb <command> --help` 
autoxgb train --help


usage: autoxgb <command> [<args>] train [-h] --train_filename TRAIN_FILENAME [--test_filename TEST_FILENAME] --output
                                        OUTPUT [--task {classification,regression}] [--idx IDX] [--targets TARGETS]
                                        [--num_folds NUM_FOLDS] [--features FEATURES] [--use_gpu] [--fast]
                                        [--seed SEED] [--time_limit TIME_LIMIT]

optional arguments:
  -h, --help            show this help message and exit
  --train_filename TRAIN_FILENAME
                        Path to training file
  --test_filename TEST_FILENAME
                        Path to test file
  --output OUTPUT       Path to output directory
  --task {classification,regression}
                        User defined task type
  --idx IDX             ID column
  --targets TARGETS     Target column(s). If there are multiple targets, separate by ';'
  --num_folds NUM_FOLDS
                        Number of folds to use
  --features FEATURES   Features to use, separated by ';'
  --use_gpu             Whether to use GPU for training
  --fast                Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set
  --seed SEED           Random seed
  --time_limit TIME_LIMIT
                        Time limit for optimization
Owner
abhishek thakur
Kaggle: www.kaggle.com/abhishek
abhishek thakur
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022