The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments.

Overview

https://imgur.com/4qIqbRn.jpg

ABR Control

The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments. ABR Control provides API's for the Mujoco, CoppeliaSim (formerly known as VREP), and Pygame simulation environments, and arm configuration files for one, two, and three-joint models, as well as the UR5 and Kinova Jaco 2 arms. Users can also easily extend the package to run with custom arm configurations. ABR Control auto-generates efficient C code for generating the control signals, or uses Mujoco's internal functions to carry out the calculations.

ABR also provides an interface and config available for controlling a real Jaco 2 at the ABR_Jaco2 repository.

Installation

The ABR Control library depends on NumPy, SymPy, SciPy, CloudPickle, Cython, SetupTools, Nengo, and Matplotlib. We recommend using Anaconda. Note that installing in a clean environment will require compiling of the dependent libraries, and will take a few minutes.

To install ABR Control, clone this repository and run:

sudo apt-get install g++
sudo apt-get install python-dev
sudo apt-get install libfreetype6-dev
conda activate your_environment
python setup.py install
python setup.py develop

ABR Control is tested to work on Python 3.6+, Python 2 is not supported.

Optional Installation

Mujoco

If you would like to use the Mujoco API you will need to install a forked version of mujoco-py with hooks for exitting out of simulations with the ESC key. To use the mujoco API, make sure you are in your anaconda environment and run:

git clone https://github.com/studywolf/mujoco-py.git
cd mujoco-py
pip install -e .
pip install glfw>=1.8.3
pip install requests

Pygame

If you would like to use the Pygame API, from your anaconda environment run:

pip install pygame

Vrep

We support Vrep <=4.0. You will need to download Vrep and follow the installation instructions.

PyDMPs

Some of the path planners work through the use of dynamic movement primitives (DMPs). DMPs allow for a stable, generalizable, and easily extensible way of representing complex trajectories. Path planners making use of DMP are appended with 'dmp' in their filename and will require the installation of the pydmps repository. To install, from your Anaconda environment run:

pip install pydmps

Usage

The ABR Control repo is comprised of three parts: 1) arms, 2) controllers, and 3) interfaces.

1a) Arms: Using CoppeliaSim, Pygame, or a real arm

All of the required information about an arm model is kept in that arm's config file. To use the ABR Control library with a new arm, the user must provide the transformation matrices (written using SymPy expressions) from the robot's origin reference frame to each link's centre-of-mass (COM) and joints. These are specified sequentially, e.g. origin -> link0 COM, link0 COM -> joint0, joint0 -> link1 COM, etc. The arm config file and any simulation code is kept in a folder named the same as the arm in the abr_control/arms/ directory.

The ABR Control configuration base class uses the SymPy transform matrices to provide functions that will calculate the transforms, Jacobian, Jacobian derivative, inertia matrices, gravity forces, and centripetal and Coriolis effects for each joint and COM. These can be accessed:

from abr_control.arms import jaco2

robot_config = jaco2.Config()
# calculate the following given the arm state at joint_angles
robot_config.Tx('joint3', q=joint_angles)  # the (x, y, z) position of joint3
robot_config.M(q=joint_angles)  # calculate the inertia matrix in joint space
robot_config.J('EE', q=joint_angles)  # the Jacobian of the end-effector

By default, the use_cython parameter is set to True to allow for real-time control by generating optimized Cython code for each of the robot configuration functions. This can take a little bit of time to generate these functions, but they are saved in ~.cache/abr_control/arm_name/saved_functions where they will be loaded from for future runs. Note that a hash is saved for the config, so if any changes are made the functions will be regenerated during the next use. The cython optimization can be turned off on instantiation:

from abr_control.arms import ur5

robot_config = ur5.Config(use_cython=False)

Below are results from running the operational space controller with different controllers with use_cython=True and False.

docs/examples/timing.png

1b) Arms: Using Mujoco

When using Mujoco the process is a bit different. Mujoco handles the calculation of all the kinematics and dynamics functions, and only requires an xml config be made describing the kinematic chain. The Mujoco API page describes this in detail.

Detailed models can be created by importing 3D modeling stl files and using the mesh object type in the tag. An example of this is the abr_control/arms/jaco2/jaco2.xml. For users building their own models, you may specify the location of the xml with the folder parameter. For more details, please refer to the Mujoco documentation linked above and use the xml files in this repository as examples.

2) Controllers

Controllers make use of the robot configuration files to generate control signals that accomplish a given task (for most controllers this is reaching a target). The ABR Control library provides implementations of several primary controllers, including operational space, generalized coordinates (joint) space, sliding, and floating control.

When using an operational space controller, it is possible to also pass in secondary controllers to operate in the null space of the operational space controller. These secondary controllers can be set up to achieve secondary goals such as avoiding joint limits and obstacles, damping movement, or maintaining a configuration near a specified resting state.

In the path_planners folder there are several path planners that can be used in conjunction with the controllers. There are filters, linear and second order, which can be used to trace a path from the current position to the target without suddenly warping and causing large spikes in generated torque. The inverse kinematics planner takes in a target for the end-effector and returns a joint angle trajectory to follow. An arc path planner is also provided that creates an arcing path which can be useful when the arm has to reach over itself. This can help prevent self-collisions and odd arm configurations.

Each path planner also has the ability to generate a trajectory for end-effector orientation with the path_plannner.generate_orientation_path() function. This uses spherical linear interpolation (SLERP) to generate a set of orientations from a start to a target quaternion. The time profile will match that of the path planner instantiated (ie: a linear path planner will have a linear step in orientation over time, with a constant change in orientation, whereas a second order path planner will have a bell shaped profile with the largest steps occurring during the middle of the movement, with an acceleration and deceleration at the start and end, respectively.) In addition to filters, there is an example path planner using the dynamic movement primitives trajectory generation system.

Finally, there is an implementation of nonlinear adaptive control in the signals folder, as well as examples in Mujoco, PyGame, and CoppeliaSim showing how this class can be used to overcome unexpected forces acting on the arm.

3) Interfaces

For communications to and from the system under control, an interface API is used. The functions available in each class vary depending on the specific system, but must provide connect, disconnect, send_forces and get_feedback methods.

Putting everything together

A control loop using these three files looks like:

from abr_control.arms import jaco2
from abr_control.controllers import OSC
from abr_control.interfaces import CoppeliaSim

robot_config = jaco2.Config()
interface = CoppeliaSim(robot_config)
interface.connect()

ctrlr = OSC(robot_config, kp=20,
            # control (x, y, z) out of [x, y, z, alpha, beta, gamma]
            ctrlr_dof=[True, True, True, False, False, False])

target_xyz = [.2, .2, .5]  # in metres
target_orientation = [0, 0, 0]  # Euler angles, relevant when controlled
for ii in range(1000):
    feedback = interface.get_feedback()  # returns a dictionary with q, dq
    u = ctrlr.generate(
        q=feedback['q'],
        dq=feedback['dq'],
        target=np.hstack([target_xyz, target_orientation]))
    interface.send_forces(u)  # send forces and step CoppeliaSim sim forward

interface.disconnect()

NOTE that when using the Mujoco interface it is necessary to instantiate and connect the interface before instantiating the controller. Some parameters only get parsed from the xml once the arm config is linked to the mujoco interface, which happens upon connection.

Examples

The ABR Control repo comes with several examples that demonstrate the use of the different interfaces and controllers.

By default all of the PyGame examples run with the three-link MapleSim arm. You can also run the examples using the two-link Python arm by changing the import statement at the top of the example scripts.

To run the CoppeliaSim examples, have the most recent CoppeliaSim version open. By default, the CoppeliaSim examples all run with the UR5 or Jaco2 arm model. To change this, change which arm folder is imported at the top of the example script. The first time you run an example you will be promted to download the arm model. Simply select yes to download the file and the simulation will start once the download completes.

To run the Mujoco examples, you will be promted to download any mesh or texture files, if they are used in the xml config, similarly to the CoppeliaSim arm model. Once the download completes the simulation will start. If you are using the forked Mujoco-Py repository (See Optional Installation section) you can exit the simulation with the ESC key and pause with the spacebar.

Owner
Applied Brain Research
Applied Brain Research
An arduino/ESP project that can play back G-Force data previously recorded

An arduino/ESP project that can play back G-Force data previously recorded

7 Apr 12, 2022
Isaac Gym Environments for Legged Robots

Isaac Gym Environments for Legged Robots This repository provides the environment used to train ANYmal (and other robots) to walk on rough terrain usi

Robotic Systems Lab - Legged Robotics at ETH Zürich 372 Jan 08, 2023
Lenovo Legion 5 Pro 2021 Linux RGB Keyboard Light Controller

Lenovo Legion 5 Pro 2021 Linux RGB Keyboard Light Controller This util allows to drive RGB keyboard light on Lenovo Legion 5 Pro 2021 Laptop Requireme

36 Dec 16, 2022
Transform a Raspberry Pi into a network diagnostic machine.

EtherView Last updated jan 30, 2022. Welcome to the EtherView project! This is a project to transform a RaspberryPi into a portable network diagnostic

1 Jan 30, 2022
Yet another automation project because a smart light is more than just on or off.

Automate home Yet another home automation project because a smart light is more than just on or off. Overview When talking about home automation there

Maja Massarini 62 Oct 10, 2022
The goal of this project is for anyone with an old printer to be able to double-sided printing.

Welcome to PDF-double-side! Hi! I'm 15. I have a old printer so I can't print double-sided outs. The goal of this project is for anyone with an old pr

DejaVu 4 Dec 28, 2021
Used python functional programming to make this Ai assistant

Python-based-AI-Assistant I have used python functional programming to make this Ai assistant. Inspiration of project : we have seen in our daily life

Durgesh Kumar 2 Dec 26, 2021
Alternative firmware for ESP8266 with easy configuration using webUI, OTA updates, automation using timers or rules, expandability and entirely local control over MQTT, HTTP, Serial or KNX. Full documentation at

Alternative firmware for ESP8266/ESP32 based devices with easy configuration using webUI, OTA updates, automation using timers or rules, expandability

Theo Arends 59 Dec 26, 2022
Plug and Play on Internet of Things with LoRa wireless modulation.

IoT-PnP Plug and Play on Internet of Things with LoRa wireless modulation. Device Side In the '505_PnP' folder has a modified ardunino template code s

Lambert Yang 1 May 19, 2022
Python Wrapper for Homeassistant's REST API

HomeassistantAPI Python Wrapper for Homeassistant's REST API Please ⭐️ the repo if you find this project useful or cool! Here is a quick example. from

Nate 29 Dec 31, 2022
Self Driving Car Prototype

Package Delivery Rover 🚀 This project is a prototype of Self Driving Car. It's based on embedded systems, to meet the current requirement of delivery

Abhishek Pawar 1 Oct 31, 2021
从零开始打造一个智能家居系统

SweetHome 从零开始打造智能家居系统的尝试,主要的实现有 可以扫码添加设备并控制设备的Android App 可以控制亮灭的灯,并可以设置在Android App连接到指定Wifi后自动亮起 可以控制开关的窗帘,机械结构部分自己设计并3D打印出来 树莓派主控,实现Http请求接口和ZigBe

金榜 5 May 01, 2022
Programming of Robotics Systems course at the University of Aveiro, Portugal, 2021-2022.

Programação de Sistemas Robóticos Miguel Riem Oliveira Universidade de Aveiro 2021-2022 Projeto AtlasCar Projecto RACE IROS 2014 AtlasCar2 ATOM IROS 2

Miguel Riem de Oliveira 22 Jul 13, 2022
Workshop for student hackathons focused on IoT dev

Scenario: The Mutt Matcher (IoT version) According to the World Health Organization there are more than 200 million stray dogs worldwide. The American

Microsoft 15 Aug 10, 2022
Get the AltAz coordinates for a given object using astropy and output on a OLED screen.

Star Coordinates Get the AltAz coordinates for a given object using astropy and output on a OLED screen. As a very very newcomer to the astronomy scen

Craig Cmehil 1 Jan 31, 2022
Home Assistant integration for energy consumption data from UK SMETS (Smart) meters using the Hildebrand Glow API.

Hildebrand Glow (DCC) Integration Home Assistant integration for energy consumption data from UK SMETS (Smart) meters using the Hildebrand Glow API. T

Aniket 153 Dec 30, 2022
DIY split-flap display

The goal is to make a low-cost display that's easy to fabricate at home in small/single quantities (e.g. custom materials can be ordered from Ponoko or similar, and other hardware is generally availa

Scott Bezek 2.5k Jan 05, 2023
🐱🖨Cat printer is a portable thermal printer sold on AliExpress for around $20.

Cat printer is a portable thermal printer sold on AliExpress for around $20. This repository contains Python code for talking to the cat printer over

671 Jan 05, 2023
Simple Python script to decode and verify an European Health Certificate QR-code

A simple Python script to decode and verify an European Health Certificate QR-code.

Mathias Panzenböck 61 Oct 05, 2022
EuroPi: A reprogrammable Eurorack project based on the Raspberry Pi Pico

EuroPi The EuroPi is a fully user reprogrammable module based on the Raspberry Pi Pico, which allows users to process inputs and controls to produce o

Allen Synthesis 218 Jan 01, 2023