Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

Overview

GPT-GNN: Generative Pre-Training of Graph Neural Networks



GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be applied to large-scale and heterogensous graphs.

You can see our KDD 2020 paper Generative Pre-Training of Graph Neural Networks for more details.

Overview

The key package is GPT_GNN, which contains the the high-level GPT-GNN pretraining framework, base GNN models, and base graph structure and data loader.

To illustrate how to apply the GPT_GNN framework for arbitrary graphs, we provide examples of pre-training on both hetergeneous (OAG) and homogeneous graphs (reddit). Both of them are of large-scale.

Within each example_* package, there is a pretrain_*.py file for pre-training a GNN on the given graph, and also multiple finetune_*.py files for training and validating on downstream tasks.

DataSet

For Open Academic Graph (OAG), we provide a heterogeneous graph containing highly-cited CS papers (8.1G) spanning from 1900-2020. You can download the preprocessed graph via this link. We split the data by their time: Pre-training ( t < 2014 ); Training ( 2014 <= t < 2017); Validation ( t = 2017 ); Testing ( 2018 <= t ). As we use the raw-text as attribute generation task for OAG, we provide a pre-trained word2vec model via this link.

If you want to directly process from raw data, you can download via this link. After downloading it, run preprocess_OAG.py to extract features and store them in our data structure.

For Reddit, we simply download the preprocessed graph using pyG.datasets API, and then turn it into our own data structure using preprocess_reddit.py. We randomly split the data into different sets.

Setup

This implementation is based on pytorch_geometric. To run the code, you need the following dependencies:

You can simply run pip install -r requirements.txt to install all the necessary packages.

Usage

We first introduce the arguments to control hyperparameters. There are mainly three types of arguments, for pre-training; for dataset; for model and optimization.

For pre-training, we provide arguments to control different modules for attribute and edge generation tasks:

  --attr_ratio                     FLOAT   The ratio (0~1) of attribute generation loss .       Default is 0.5.
  --attr_type                      STR     type of attribute decoder ['text' or 'vec']          Default is 'vec'
  --neg_samp_num                   INT     Whether to use layer-norm on the last layer.         Default is False.
  --queue_size                     INT     Max size of adaptive embedding queue.                Default is 256.

For datasets, we provide arguments to control mini-batch sampling:

  --data_dir                       STR     The address of preprocessed graph.
  --pretrain_model_dir             STR     The address for storing the pre-trained models.
  --sample_depth                   INT     How many layers within a mini-batch subgraph         Default is 6.
  --sample_width                   INT     How many nodes to be sampled per layer per type      Default is 128.

For both pre-training and fine-tuning, we provide arguments to control model and optimizer hyperparameters. We highlight some key arguments below:

  --conv_name                      STR     Name of GNN filter (model)                           Default is hgt.
  --scheduler                      STR     Name of learning rate scheduler                      Default is cycle (for pretrain) and cosine (for fine-tuning)
  --n_hid                          INT     Number of hidden dimension                           Default is 400.
  --n_layers                       INT     Number of GNN layers                                 Default is 3.
  --prev_norm                      BOOL    Whether to use layer-norm on previous layers.        Default is False.
  --last_norm                      BOOL    Whether to use layer-norm on the last layer.         Default is False.
  --max_lr                         FLOAT   Maximum learning rate.                               Default is 1e-3 (for pretrain) and 5e-4 (for fine-tuning).  

The following commands pretrain a 3-layer HGT over OAG-CS:

python pretrain_OAG.py --attr_type text --conv_name hgt --n_layers 3 --pretrain_model_dir /datadrive/models/gta_all_cs3

The following commands use the pre-trained model as initialization and finetune on the paper-field classification task using 10% of training and validation data:

python finetune_OAG_PF.py --use_pretrain --pretrain_model_dir /datadrive/models/gta_all_cs3 --n_layer 3 --data_percentage 0.1

Pre-trained Models

  1. The 3-layer HGT model pre-trained over OAG-CS under Time-Transfer Setting via this link
  2. The 3-layer HGT model pre-trained over Reddit via this link

Citation

Please consider citing the following paper when using our code for your application.

@inproceedings{gpt_gnn,
  title={GPT-GNN: Generative Pre-Training of Graph Neural Networks},
  author={Ziniu Hu and Yuxiao Dong and Kuansan Wang and Kai-Wei Chang and Yizhou Sun},
  booktitle={Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
  year={2020}
}

This implementation is mainly based on pyHGT API.

Owner
Ziniu Hu
CS PhD student at UCLA
Ziniu Hu
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022