Does Pretraining for Summarization Reuqire Knowledge Transfer?

Overview

Does Pretraining for Summarization Reuqire Knowledge Transfer?

This repository is the official implementation of the work in the paper Does Pretraining for Summarization Reuqire Knowledge Transfer? to appear in Findings of EMNLP 2021.
You can find the paper on arXiv here: https://arxiv.org/abs/2109.04953

Requirements

This code requires Python 3 (tested using version 3.6)

To install requirements, run:

pip install -r requirements.txt

Preparing finetuning datasets

To prepare a summarization dataset for finetuning, run the corresponding script in the finetuning_datasetgen folder. For example, to prepare the cnn-dailymail dataset run:

cd finetuning_datasetgen
python cnndm.py

Running finetuning experiment

We show here how to run training, prediction and evaluation steps for a finetuning experiment. We assume that you have downloaded the pretrained models in the pretrained_models folder from the provided Google Drive link (see pretrained_models/README.md) If you want to pretrain models yourself, see latter part of this readme for the instructions.

All models in our work are trained using allennlp config files which are in .jsonnet format. To run a finetuning experiment, simply run

# for t5-like models
./pipeline_t5.sh 
   
    

# for pointer-generator models
./pipeline_pg.sh 
    

    
   

For example, for finetuning a T5 model on cnndailymail dataset, starting from a model pretrained with ourtasks-nonsense pretraining dataset, run

./pipeline_t5.sh finetuning_experiments/cnndm/t5-ourtasks-nonsense

Similarly, for finetuning a randomly-initialized pointer-generator model, run

./pipeline_pg.sh finetuning_experiments/cnndm/pg-randominit

The trained model and output files would be available in the folder that would be created by the script.

model.tar.gz contains the trained (finetuned) model

test_outputs.jsonl contains the outputs of the model on the test split.

test_genmetrics.json contains the ROUGE scores of the output

Creating pretraining datasets

We have provided the nonsense pretraining datasets used in our work via Google Drive (see dataset_root/pretraining_datasets/README.md for instructions)

However, if you want to generate your own pretraining corpus, you can run

cd pretraining_datasetgen
# for generating dataset using pretraining tasks
python ourtasks.py
# for generating dataset using STEP pretraining tasks
python steptasks.py

These commands would create pretraining datasets using nonsense. If you want to create datasets starting from wikipedia documents please look into the two scripts which guide you how to do that by commenting/uncommenting two blocks of code.

Pretraining models

Although we provide you the pretrained model checkpoints via GoogleDrive, if you want to pretrain your own models, you can do that by using the corresponding pretraining config file. As an example, we have provided a config file which pretrains on ourtasks-nonsense dataset. Make sure that the pretraining dataset files exist (either created by you or downloaded from GoogleDrive) before running the pretraining command. The pretraining is also done using the same shell scripts used for the finetuning experiments. For example, to pretrain a model on the ourtasks-nonsense dataset, simply run :

./pipeline_t5.sh pretraining_experiments/pretraining_t5_ourtasks_nonsense
Owner
Approximately Correct Machine Intelligence (ACMI) Lab
Research on machine learning, its social impacts, and applications to healthcare. PI—@zackchase
Approximately Correct Machine Intelligence (ACMI) Lab
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022