MakeItTalk: Speaker-Aware Talking-Head Animation

Overview

MakeItTalk: Speaker-Aware Talking-Head Animation

This is the code repository implementing the paper:

MakeItTalk: Speaker-Aware Talking-Head Animation

Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevarria , Evangelos Kalogerakis, Dingzeyu Li

SIGGRAPH Asia 2020

Abstract We present a method that generates expressive talking-head videos from a single facial image with audio as the only input. In contrast to previous attempts to learn direct mappings from audio to raw pixels for creating talking faces, our method first disentangles the content and speaker information in the input audio signal. The audio content robustly controls the motion of lips and nearby facial regions, while the speaker information determines the specifics of facial expressions and the rest of the talking-head dynamics. Another key component of our method is the prediction of facial landmarks reflecting the speaker-aware dynamics. Based on this intermediate representation, our method works with many portrait images in a single unified framework, including artistic paintings, sketches, 2D cartoon characters, Japanese mangas, and stylized caricatures. In addition, our method generalizes well for faces and characters that were not observed during training. We present extensive quantitative and qualitative evaluation of our method, in addition to user studies, demonstrating generated talking-heads of significantly higher quality compared to prior state-of-the-art methods.

[Project page] [Paper] [Video] [Arxiv] [Colab Demo] [Colab Demo TDLR]

img

Figure. Given an audio speech signal and a single portrait image as input (left), our model generates speaker-aware talking-head animations (right). Both the speech signal and the input face image are not observed during the model training process. Our method creates both non-photorealistic cartoon animations (top) and natural human face videos (bottom).

Updates

  • facewarp source code and compile instructions
  • Pre-trained models
  • Google colab quick demo for natural faces [detail] [TDLR]
  • Training code for each module
  • Customized puppet creating tool

Requirements

  • Python environment 3.6
conda create -n makeittalk_env python=3.6
conda activate makeittalk_env
sudo apt-get install ffmpeg
  • python packages
pip install -r requirements.txt
sudo dpkg --add-architecture i386
wget -nc https://dl.winehq.org/wine-builds/winehq.key
sudo apt-key add winehq.key
sudo apt-add-repository 'deb https://dl.winehq.org/wine-builds/ubuntu/ xenial main'
sudo apt update
sudo apt install --install-recommends winehq-stable

Pre-trained Models

Download the following pre-trained models to examples/ckpt folder for testing your own animation.

Model Link to the model
Voice Conversion Link
Speech Content Module Link
Speaker-aware Module Link
Image2Image Translation Module Link
Non-photorealistic Warping (.exe) Link

Animate You Portraits!

  • Download pre-trained embedding [here] and save to examples/dump folder.

Nature Human Faces / Paintings

  • crop your portrait image into size 256x256 and put it under examples folder with .jpg format. Make sure the head is almost in the middle (check existing examples for a reference).

  • put test audio files under examples folder as well with .wav format.

  • animate!

python main_end2end.py --jpg 
     

   
  • use addition args --amp_lip_x --amp_lip_y --amp_pos to amply lip motion (in x/y-axis direction) and head motion displacements, default values are =2., =2., =.5

Cartoon Faces

  • put test audio files under examples folder as well with .wav format.

  • animate one of the existing puppets

Puppet Name wilk roy sketch color cartoonM danbooru1
Image img img img img img img
python main_end2end_cartoon.py --jpg 
   
     --jpg_bg 
    

    
   
  • --jpg_bg takes a same-size image as the background image to create the animation, such as the puppet's body, the overall fixed background image. If you want to use the background, make sure the puppet face image (i.e. --jpg image) is in png format and is transparent on the non-face area. If you don't need any background, please also create a same-size image (e.g. a pure white image) to hold the argument place.

  • use addition args --amp_lip_x --amp_lip_y --amp_pos to amply lip motion (in x/y-axis direction) and head motion displacements, default values are =2., =2., =.5

  • create your own puppets (ToDo...)

Train

Train Voice Conversion Module

Todo...

Train Content Branch

  • Create dataset root directory

  • Dataset: Download preprocessed dataset [here], and put it under /dump .

  • Train script: Run script below. Models will be saved in /ckpt/ .

    python main_train_content.py --train --write --root_dir <root_dir> --name <train_instance_name>

Train Speaker-Aware Branch

Todo...

Train Image-to-Image Translation

Todo...

License

Acknowledgement

We would like to thank Timothy Langlois for the narration, and Kaizhi Qian for the help with the voice conversion module. We thank Jakub Fiser for implementing the real-time GPU version of the triangle morphing algorithm. We thank Daichi Ito for sharing the caricature image and Dave Werner for Wilk, the gruff but ultimately lovable puppet.

This research is partially funded by NSF (EAGER-1942069) and a gift from Adobe. Our experiments were performed in the UMass GPU cluster obtained under the Collaborative Fund managed by the MassTech Collaborative.

Owner
Adobe Research
Adobe Research
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022