Procedural modeling of fruit and sandstorm in Blender (bpy).

Overview

SandFruit

Procedural modelling of fruit and sandstorm. Created by Adriana Arcia and Maya Boateng. Last updated December 19, 2020

Goal & Inspiration

Our goal for this project was to create a way of procedurally modeling fruits, specifically exotic fruits, as they have a wide range of shapes and textures that we found interesting. We were inspired by papers about using sweeps of a profile along a path to generate shapes as well as papers about particle systems and surface textures.

To generate the fruit shapes, we used a general form of a profile of a variety of fruits with round shapes, such as apples, pears, and lemos and used rotation to generate a solid surface. The spike texture was created using a particle system, which we were inspired to after our presentation of Reeves’s paper on particle systems. We also included two bump texturing options for the fruits and added more variance to the shape by jittering random vertices using proportional editing in Blender, and animated a scene with the fruit as part of a sandstorm.

Roles and Responsibilities

This project was very collaborative, so there was considerable fluidity in roles and responsibilities. Maya worked primarily on the script that generated the pear meshes, the script that jittered random vertices, and the texturing. Adriana mainly worked on the texturing, sandstorm animation, and building of the scene layout, including the terrain.

Description of how the code works

To generate the meshes for the fruit shapes, we first begin with a bezier curve with 4 points on it. Then depending on a random factor that determines the type of fruit shape being generated, a function translates the points and positions the handles in such a way that forms a general shape for the fruit type. Then, the points and handles of the curve are sent to a function that jitters them randomly to create some variation in the profile shape. Finally, the points and handles are scaled by the same random factor in the x and y directions to create some variation in fruit size as well. Then, using the “screw” modifier in Blender, the shape is rotated around an axis to create the solid shape and turned into a mesh. After this, random vertices are selected and jittered by a random amount to create even more variance in shape and irregularities in the mesh. We also use two different textures to give our fruit an even more bumpy effect without having to make the mesh more complex.

To generate a fruit shape, import the fruitNew.py file into blender and run the script until you have found a desired mesh shape. To add a texture to the fruit, you must install the Fruit texture addon and the panel should show up in the sidebar, where you can choose one of two textures and a base color and apply it to the active object. To add spikes, use spikes.py and run bpy.ops.mesh.spikes() as in our midterm project.

The sandstorm portion of our project is run similarly, by running bpy.ops.mesh.sandstorm(). This function also utilizes another function we implemented, bpy.ops.mesh.terrain(). The inputs are the x scale, y scale, z scale, and the strength of the displacement or the turbulence. The terrain function is a very simple implementation of terrain generation using ‘cloud’ noise in conjunction with a displacement modifier. If the user wants to use their own terrain or use the terrain function, they should run the sandstorm function with the terrain selected. This will make the sandstorm active on that terrain. If there is no object selected, the sandstorm function defaults to a flat plane. The inputs to the sandstorm terrain are the size of the sandstorm’s base (x, y, and z scale), its rotation (x, y, and z rotation) and the total displacement along the y axis. This last parameter is included because the sandstorm can currently only move in a straight line.

To create the sandstorm we start with a simple cylinder mesh. We use a similar technique as mentioned earlier for the terrain function to create noise on the surface. Then we also add a vertex weight modifier between the storm and the terrain. We also used a lattice modifier to make the cylinder appear flatter on the bottom as it rotates, to create a more realistic sandstorm. The surface of the cylinder is then used as an emitter for a particle system. We also enable physics for fluids on the cylinder. Then a ‘bounding box’ is added, a cube surrounding the central cylinder which functions as a fluid domain.

Challenges

Some challenges associated with the general fruit shape are that the profiles are only loosely based on the general profile of the shape, so certain random jitters can make the fruits look irregular and misshapen beyond any normal irregularities that fruits may have. In addition, sometimes the random selection of vertices or the location of the jitter is strange and leads to the fruit looking strange. This was a problem while attempting to implement aging of the fruit. Subdividing the vertices every couple of iterations may help with these issues.

One challenge with the sandstorm was getting the cylinder not to be too noticeable. This still isn't perfect, and you can see in our animation that it is still fairly darker and distinguishable from the overall sandstorm. It was difficult to find a balance between this aesthetic caveat and having a sandstorm that is full rather than sparse.

Future ideas/expansion

In the future, it may be possible to refine the functions that generate the profile shapes so that there are not as many unnatural looking ridges and bumps, and possibly use a more mathematical function to generate the profiles instead of hard coding them in, in addition to writing functions for more types of fruit families. There is also the possibility of using the bevel function rather than the “screw” modifier to generate the shapes, by having the profile beveled around a circle or any other closed shape. This would allow us to define sections within the fruit shape to give a taper to the radius at certain points around the edge of the fruit, like that of a pumpkin. We could also add in a function to generate stem shapes of the fruits by extruding a profile along an arc or path with a taper defined for the size of the profile at a given point along the path. Although we attempted this, we would like to continue to try to animate and model the aging of fruits in some way, even if it is an imaginary framework. While trying to select random vertices and scale them down iteratively, we encountered jagged edges and little change beyond what we were getting from the vertex jitter.

It would also be ideal if the sandstorm could move more flexibly instead of moving in a straight line. It also does not work as smoothly on non-flat terrain, so there is room for improvement in terms of being more dynamic. As mentioned earlier, there could be some improvement made to help the cylinder particle system less noticeable. We also did not get a chance to improve much on our spikes, which could still be perfected with more randomness and perhaps adding curvature.

Results

The results folder contains screenshots of some possible output.

Sources

Reeves, W. T. (1983). Particle Systems—a Technique for Modeling a Class of Fuzzy Objects. ACM Transactions on Graphics, 2(2), 91-108. doi:10.1145/357318.357320

John M. Snyder California Institute of Technology et al. 1992. Generative modeling: a symbolic system for geometric modeling. (July 1992). Retrieved October 19, 2020 from https://dl.acm.org/doi/10.1145/133994.134094

Owner
Adriana Arcia
Adriana Arcia
Bitflip Fault Simulation Platform by Daniele Rizzieri (2021)

BFSP [v1.05] Bitflip Fault Simulation Platform by Daniele Rizzieri (2021) The platform injects a random bitflip in each of N copies of a binary file.

Daniele Rizzieri 2 Nov 05, 2022
This bot uploads telegram files to MixDrop.co,File.io.

What is about this bot ? This bot uploads telegram files to MixDrop.co, File.io. Usage: Send any file, and the bot will upload it to MixDrop.co, File.

Abhijith NT 3 Feb 26, 2022
Agora-token-helper - Some help tools for AgoraToken

Agora Token Helper Support AgoraToken version 001 - 006. But for security reason

In this project , I play with the YouTube data API and extract trending videos in Nigeria on a particular day

YouTubeTrendingVideosAnalysis In this project , I played with the YouTube data API and extracted trending videos in Nigeria on a particular day. This

1 Jan 11, 2022
Tool for working with Direct System Calls in Cobalt Strike's Beacon Object Files (BOF) via Syswhispers2

Tool for working with Direct System Calls in Cobalt Strike's Beacon Object Files (BOF) via Syswhispers2

150 Dec 31, 2022
A (hopefully) considerably copious collection of classical cipher crackers

ClassicalCipherCracker A (hopefully) considerably copious collection of classical cipher crackers Written in Python3 (and run with PyPy) TODOs Write a

Stanley Zhong 2 Feb 22, 2022
Uma moeda simples e segura!

SecCoin - Documentação A SecCoin foi criada com intuito de ser uma moeda segura, de fácil investimento e mineração. A Criptomoeda está na sua primeira

Sec-Coin Team 5 Dec 09, 2022
Module for remote in-memory Python package/module loading through HTTP/S

httpimport Python's missing feature! The feature has been suggested in Python Mailing List Remote, in-memory Python package/module importing through H

John Torakis 220 Dec 17, 2022
A Company Management System For Python

campany-management Getting started To make it easy for you to get started with GitLab, here's a list of recommended next steps. Already a pro? Just ed

hatice akpınar 3 Aug 29, 2022
A totally unrealistic cell growth/reproduction simulation.

A totally unrealistic cell growth/reproduction simulation.

Andrien Wiandyano 1 Oct 24, 2021
用于红队成员初步快速攻击的全自动化工具。

关于 Author:m0sway Mail:[email protected] Github:https://www.github.com/m0sway/Jud JuD是

m0sway 46 Jul 21, 2022
Implemented Exploratory Data Analysis (EDA) using Python.Built a dashboard in Tableau and found that 45.87% of People suffer from heart disease.

Heart_Disease_Diagnostic_Analysis Objective 🎯 The aim of this project is to use the given data and perform ETL and data analysis to infer key metrics

Sultan Shaikh 4 Jan 28, 2022
An advanced pencil sketch generator

Pencilate An advanced pencil sketch generator About : An advanced pencil sketch maker made in just 12 lines of code. Yes you read it right, JUST 12 LI

MAINAK CHAUDHURI 23 Dec 17, 2022
A joke conlang with minimal semantics

SyntaxLang Reserved Defined Words Word Function fo Terminates a noun phrase or verb phrase tu Converts an adjective block or sentence to a noun to Ter

Leo Treloar 1 Dec 07, 2021
ViberExport - Export messages from Viber messenger using viber.db file

📲 ViberExport Export messages from Viber messenger using viber.db file ⚡ Usage:

7 Nov 23, 2022
program to store and update pokemons using SQL and Flask

Pokemon SQL and Flask Pokemons api in python. Technologies flask pymysql Description PokeCorp is a company that tracks pokemon and their trainers arou

Sara Hindy Salfer 1 Oct 20, 2021
Unofficial Python implementation of the DNMF overlapping community detection algorithm

DNMF Unofficial Python implementation of the Discrete Non-negative Matrix Factorization (DNMF) overlapping community detection algorithm Paper Ye, Fan

Andrej Janchevski 3 Nov 30, 2021
AdventOfCode 2021 solutions from the Devcord server

adventofcode-21 Ein Sammel-Repository für Advent of Code 2021-Lösungen der deutschen DevCord-Community. A repository collecting Advent of Code 2021 so

Devcord 12 Aug 26, 2022
RFDesign - Protein hallucination and inpainting with RoseTTAFold

RFDesign: Protein hallucination and inpainting with RoseTTAFold Jue Wang (juewan

139 Jan 06, 2023
Project of the MSEC_LDD . group

HackathonJuntionXHN Project of team MSEC_LQĐ What did we do? Building application to generate whitelist regex for Web application firewall How to setu

Nguyễn Mạnh Cường 0 Dec 19, 2021