The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

Overview

NTIRE 2022 - Image Inpainting Challenge

Important dates

  • 2022.02.01: Release of train data (input and output images) and validation data (only input)
  • 2022.02.01: Validation server online
  • 2022.03.13: Final test data release (only input images)
  • 2022.03.20: Test output results submission deadline
  • 2022.03.20: Fact sheets and code/executable submission deadline
  • 2022.03.22: Preliminary test results release to the participants
  • 2022.04.01: Paper submission deadline for entries from the challenge
  • 2022.06.19: Workshop day

Description

The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

Image manipulation is a key computer vision task, aiming at the restoration of degraded image content, the filling in of missing information, or the needed transformation and/or manipulation to achieve the desired target (with respect to perceptual quality, contents, or performance of apps working on such images). Recent years have witnessed an increased interest from the vision and graphics communities in these fundamental topics of research. Not only has there been a constantly growing flow of related papers, but also substantial progress has been achieved.

Recently, there has been a substantial increase in the number of published papers that directly or indirectly address Image Inpainting. Due to a lack of a standardized framework, it is difficult for a new method to perform a comprehensive and fair comparison with respect to existing solutions. This workshop aims to provide an overview of the new trends and advances in those areas. Moreover, it will offer an opportunity for academic and industrial attendees to interact and explore collaborations.

Jointly with the NTIRE workshop, we have an NTIRE challenge on Image Inpainting, that is, the task of predicting the values of missing pixels in an image so that the completed result looks realistic and coherent. This challenge has 3 main objectives:

  1. Direct comparison of recent state-of-the-art Image Inpainting solutions, which will be considered as baselines. See baselines.
  2. To perform a comprehensive analysis on the different types of masks, for instance, strokes, half completion, nearest neighbor upsampling, etc. Thus, highlighting the pros and cons of each method for each type of mask. See Type of masks.
  3. To set a public benchmark on 4 different datasets (FFHQ, Places, ImageNet, and WikiArt) for direct and easy comparison. See data.

This challenge has 2 tracks:

Main Goal

The aim is to obtain a mask agnostic network design/solution capable of producing high-quality results with the best perceptual quality with respect to the ground truth.

Type of Masks

In addition to the typical strokes, with this challenge, we aim at more generalizable solutions.

Thick Strokes Medium Strokes Thin Strokes
Every_N_Lines Completion Expand
Nearest_Neighbor

Data

Following a common practice in Image Inpainting methods, we use three popular datasets for our challenge: FFHQ, Places, and ImageNet. Additionally, to explore a new benchmark, we also use the WikiArt dataset to tackle inpainting towards art creation. See the data for more info about downloading the datasets.

Competition

The top-ranked participants will be awarded and invited to follow the CVPR submission guide for workshops to describe their solutions and to submit to the associated NTIRE workshop at CVPR 2022.

Evaluation

See Evaluation.

Provided Resources

  • Scripts: With the dataset, the organizers will provide scripts to facilitate the reproducibility of the images and performance evaluation results after the validation server is online. More information is provided on the data page.
  • Contact: You can use the forum on the data description page (Track1 and Track 2 - highly recommended!) or directly contact the challenge organizers by email (me [at] afromero.co, a.castillo13 [at] uniandes.edu.co, and Radu.Timofte [at] vision.ee.ethz.ch) if you have doubts or any question.

Issues and questions:

In case of any questions about the challenge or the toolkit, feel free to open an issue on Github.

Organizers

Terms and conditions

The terms and conditions for participating in the challenge are provided here

Shout-outs

Thanks to everyone who makes their code and models available. In particular,

Owner
Andrés Romero
Postdoctoral Researcher
Andrés Romero
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023