Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Overview

Deep-Unsupervised-Domain-Adaptation


Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Paper: Evaluation of Deep Neural Network Domain Adaptation Techniques for Image Recognition

Abstract

It has been well proved that deep networks are efficient at extracting features from a given (source) labeled dataset. However, it is not always the case that they can generalize well to other (target) datasets which very often have a different underlying distribution. In this report, we evaluate four different domain adaptation techniques for image classification tasks: Deep CORAL, Deep Domain Confusion (DDC), Conditional Adversarial Domain Adaptation (CDAN) and CDAN with Entropy Conditioning (CDAN+E). The selected domain adaptation techniques are unsupervised techniques where the target dataset will not carry any labels during training phase. The experiments are conducted on the office-31 dataset.

Results

Accuracy performance on the Office31 dataset for the source and domain data distributions (with and without transfer losses).

Deep CORAL DDC
CDAN CDAN+E

Target accuracies for all six domain shifts in Office31 dataset (amazon, webcam and dslr)

Method A → W A → D W → A W → D D → A D → W
No Adaptaion 43.1 ± 2.5 49.2 ± 3.7 35.6 ± 0.6 94.2 ± 3.1 35.4 ± 0.7 90.9 ± 2.4
DeepCORAL 49.5 ± 2.7 40.0 ± 3.3 38.3 ± 0.4 74.4 ± 4.3 38.5 ± 1.5 89.1 ± 4.4
DDC 41.7 ± 9.1 --- --- --- --- ---
CDAN 44.9 ± 3.3 49.5 ± 4.6 34.8 ± 2.4 93.3 ± 3.4 32.9 ± 3.4 88.3 ± 3.8
CDAN+E 48.7 ± 7.5 53.7 ± 4.7 35.3 ± 2.7 93.6 ± 3.4 33.9 ± 2.2 87.7 ± 4.0

Training and inference

To train the model in your computer you must download the Office31 dataset and put it in your data folder.

Execute training of a method by going to its folder (e.g. DeepCORAL):

cd DeepCORAL/
python main.py --epochs 100 --batch_size_source 128 --batch_size_target 128 --name_source amazon --name_target webcam

Loss and accuracy plots

Once the model is trained, you can generate plots like the ones shown above by running:

cd DeepCORAL/
python plot_loss_acc.py --source amazon --target webcam --no_epochs 10

The following is a list of the arguments the usuer can provide:

  • --epochs number of training epochs
  • --batch_size_source batch size of source data
  • --batch_size_target batch size of target data
  • --name_source name of source dataset
  • --name_target name of source dataset
  • --num_classes no. classes in dataset
  • --load_model flag to load pretrained model (AlexNet by default)
  • --adapt_domain bool argument to train with or without specific transfer loss

Requirements

  • tqdm
  • PyTorch
  • matplotlib
  • numpy
  • pickle
  • scikit-image
  • torchvision

References

Owner
Alan Grijalva
M. Sc. Student in Autonomous Systems, B. Sc. Physics.
Alan Grijalva
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Pytorch Lightning 1.2k Jan 06, 2023
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022