A simple interface for editing natural photos with generative neural networks.

Overview

Neural Photo Editor

A simple interface for editing natural photos with generative neural networks.

GUI1 GUI2 GUI3

This repository contains code for the paper "Neural Photo Editing with Introspective Adversarial Networks," and the Associated Video.

Installation

To run the Neural Photo Editor, you will need:

  • Python, likely version 2.7. You may be able to use early versions of Python2, but I'm pretty sure there's some incompatibilities with Python3 in here.
  • Theano, development version.
  • lasagne, development version.
  • I highly recommend cuDNN as speed is key, but it is not a dependency.
  • numpy, scipy, PIL, Tkinter and tkColorChooser, but it is likely that your python distribution already has those.

Running the NPE

By default, the NPE runs on IAN_simple. This is a slimmed-down version of the IAN without MDC or RGB-Beta blocks, which runs without lag on a laptop GPU with ~1GB of memory (GT730M)

If you're on a Windows machine, you will want to create a .theanorc file and at least set the flag FLOATX=float32.

If you're on a linux machine, you can just insert THEANO_FLAGS=floatX=float32 before the command line call.

If you don't have cuDNN, simply change line 56 of the NPE.py file from dnn=True to dnn=False. Note that I presently only have the non-cuDNN option working for IAN_simple.

Then, run the command:

python NPE.py

If you wish to use a different model, simply edit the line with "config path" in the NPE.py file.

You can make use of any model with an inference mechanism (VAE or ALI-based GAN).

Commands

  • You can paint the image by picking a color and painting on the image, or paint in the latent space canvas (the red and blue tiles below the image).
  • The long horizontal slider controls the magnitude of the latent brush, and the smaller horizontal slider controls the size of both the latent and the main image brush.
  • You can select different entries from the subset of the celebA validation set (included in this repository as an .npz) by typing in a number from 0-999 in the bottom left box and hitting "infer."
  • Use the reset button to return to the ground truth image.
  • Press "Update" to update the ground-truth image and corresponding reconstruction with the current image. Use "Infer" to return to an original ground truth image from the dataset.
  • Use the sample button to generate a random latent vector and corresponding image.
  • Use the scroll wheel to lighten or darken an image patch (equivalent to using a pure white or pure black paintbrush). Note that this automatically returns you to sample mode, and may require hitting "infer" rather than "reset" to get back to photo editing.

Training an IAN on celebA

You will need Fuel along with the 64x64 version of celebA. See here for instructions on downloading and preparing it.

If you wish to train a model, the IAN.py file contains the model configuration, and the train_IAN.py file contains the training code, which can be run like this:

python train_IAN.py IAN.py

By default, this code will save (and overwrite!) the weights to a .npz file with the same name as the config.py file (i.e. "IAN.py -> IAN.npz"), and will output a jsonl log of the training with metrics recorded after every chunk.

Use the --resume=True flag when calling to resume training a model--it will automatically pick up from the most recent epoch.

Sampling the IAN

You can generate a sample and reconstruction+interpolation grid with:

python sample_IAN.py IAN.py

Note that you will need matplotlib. to do so.

Known Issues/Bugs

My MADE layer currently only accepts hidden unit sizes that are equal to the size of the latent vector, which will present itself as a BAD_PARAM error.

Since the MADE really only acts as an autoregressive randomizer I'm not too worried about this, but it does bear looking into.

I messed around with the keywords for get_model, you'll need to deal with these if you wish to run any model other than IAN_simple through the editor.

Everything is presently just dumped into a single, unorganized directory. I'll be adding folders and cleaning things up soon.

Notes

Remainder of the IAN experiments (including SVHN) coming soon.

I've integrated the plat interface which makes the NPE itself independent of framework, so you should be able to run it with Blocks, TensorFlow, PyTorch, PyCaffe, what have you, by modifying the IAN class provided in models.py.

Acknowledgments

This code contains lasagne layers and other goodies adopted from a number of places:

Owner
Andy Brock
Dimensionality Diabolist
Andy Brock
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022