[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Overview

PWC PWC

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021)

[arXiv][Project page >> coming soon]

Sanath Narayan*, Akshita Gupta*, Salman Khan, Fahad Shahbaz Khan, Ling Shao, Mubarak Shah

( 🌟 denotes equal contribution)

Installation

The codebase is built on PyTorch 1.1.0 and tested on Ubuntu 16.04 environment (Python3.6, CUDA9.0, cuDNN7.5).

For installing, follow these intructions

conda create -n mlzsl python=3.6
conda activate mlzsl
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image scikit-learn opencv-python yacs joblib natsort h5py tqdm pandas

Install warmup scheduler

cd pytorch-gradual-warmup-lr; python setup.py install; cd ..

Attention Visualization

Results

Our approach on NUS-WIDE Dataset.

Our approach on OpenImages Dataset.

Training and Evaluation

NUS-WIDE

Step 1: Data preparation

  1. Download pre-computed features from here and store them at features folder inside BiAM/datasets/NUS-WIDE directory.
  2. [Optional] You can extract the features on your own by using the original NUS-WIDE dataset from here and run the below script:
python feature_extraction/extract_nus_wide.py

Step 2: Training from scratch

To train and evaluate multi-label zero-shot learning model on full NUS-WIDE dataset, please run:

sh scripts/train_nus.sh

Step 3: Evaluation using pretrained weights

To evaluate the multi-label zero-shot model on NUS-WIDE. You can download the pretrained weights from here and store them at NUS-WIDE folder inside pretrained_weights directory.

sh scripts/evaluate_nus.sh

OPEN-IMAGES

Step 1: Data preparation

  1. Please download the annotations for training, validation, and testing into this folder.

  2. Store the annotations inside BiAM/datasets/OpenImages.

  3. To extract the features for OpenImages-v4 dataset run the below scripts for crawling the images and extracting features of them:

## Crawl the images from web
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `train`: download images into `./image_data/train/`
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `validation`: download images into `./image_data/validation/`
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `test`: download images into `./image_data/test/`

## Run feature extraction codes for all the 3 splits
python feature_extraction/extract_openimages_train.py
python feature_extraction/extract_openimages_test.py
python feature_extraction/extract_openimages_val.py

Step 2: Training from scratch

To train and evaluate multi-label zero-shot learning model on full OpenImages-v4 dataset, please run:

sh scripts/train_openimages.sh
sh scripts/evaluate_openimages.sh

Step 3: Evaluation using pretrained weights

To evaluate the multi-label zero-shot model on OpenImages. You can download the pretrained weights from here and store them at OPENIMAGES folder inside pretrained_weights directory.

sh scripts/evaluate_openimages.sh

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citation

If you find this repository useful, please consider giving a star ⭐ and citation 🎊 :

@article{narayan2021discriminative,
title={Discriminative Region-based Multi-Label Zero-Shot Learning},
author={Narayan, Sanath and Gupta, Akshita and Khan, Salman and  Khan, Fahad Shahbaz and Shao, Ling and Shah, Mubarak},
journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
publisher = {IEEE},
year={2021}
}

Contact

Should you have any question, please contact πŸ“§ [email protected]

Owner
Akshita Gupta
Sem @IITR | Outreachy @mozilla | Research Engineer @IIAI
Akshita Gupta
ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ матСматичСским ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ машинного обучСния

ML-MathMethods-Test ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ матСматичСским ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ машинного обучСния. ВычислСниС основных статистик, Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Ρ€Π°Π·Π»

Stas Ivanovskii 1 Jan 06, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, β€œ3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022