Code for "On Memorization in Probabilistic Deep Generative Models"

Overview

On Memorization in Probabilistic Deep Generative Models

This repository contains the code necessary to reproduce the experiments in On Memorization in Probabilistic Deep Generative Models. You can also use this code to measure memorization in other types of probabilistic deep generative models. If you use our code in your own work please cite the paper using, for instance, the following BibTeX entry:

@article{van2021memorization,
  title={On Memorization in Probabilistic Deep Generative Models},
  author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
  journal={arXiv preprint arXiv:2106.03216},
  year={2021}
}

If you have any questions or encounter an issue when using this code, please send an email to gertjanvandenburg at gmail dot com.

Introduction

The files in the scripts directory are needed to reproduce the experiments and generate the figures in the paper. The experiments are organized using the Makefile provided. To reproduce the experiments or recreate the figures from the analysis, you'll have to install a number of dependencies. We use PyTorch to implement the deep learning algorithms. If you don't wish to re-run all the models, you can download the result files used in the paper (see below).

The scripts are all written in Python, and the necessary external dependencies can be found in the requirements.txt file. These can be installed using:

$ pip install -r requirements.txt

To recreate the figures the following system dependencies are also needed: pdflatex, latexmk, lualatex, and make. These programs are available for all major platforms.

Reproducing the results

To train the models on the different data sets, you can run:

$ make memorization

Note that depending on your machine this may take some time, so it might be easier to simply download the result files instead. It is also worth mentioning that while we have made an effort to ensure reproducibility by setting the random seed in PyTorch, platform or package version differences may result in slightly different output files (see also PyTorch Reproducibility).

All figures in the paper are generated from the raw result files using Python scripts. First, the summarize.py script takes the raw result files and creates summary files for each data set. Next, the analysis scripts are used to generate the figures, most of which are LaTeX files that require compilation using PDFLaTeX or LuaLaTeX. Simply run:

$ make analysis

to create the summaries and the output files. When using the result files linked below this will give the exact same figures as shown in the paper.

Result files

Due to their size, the raw result files are not contained in this repository, but can be downloaded separately from this link (about 2.6GB). After downloading the results.zip file, unpack it and move the results directory to where you've cloned this repository (so adjacent to the scripts directory). Below is a concise overview of the necessary commands:

$ git clone https://github.com/alan-turing-institute/memorization
$ cd memorization
$ wget https://gertjanvandenburg.com/projects/memorization/results.zip # or download the file in some other way
$ unzip results.zip
$ touch results/*/*/*          # update modification time of the result files
$ make analysis                # optionally, run ``make -n analysis`` first to see what will happen

After unpacking the zip file, you can optionally verify the integrity of the results using the SHA-256 checksums provided:

$ sha256sum --check results.sha256

License

The code in this repository is licensed under the MIT license. See the LICENSE file for further details. Reuse of the code in this repository is allowed, but should cite our paper.

Notes

If you find any problems or have a suggestion for improvement of this repository, please let me know as it will help make this resource better for everyone.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022