Supervised domain-agnostic prediction framework for probabilistic modelling

Overview

skpro

PyPI version Build Status License

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data points.

The package offers a variety of features and specifically allows for

  • the implementation of probabilistic prediction strategies in the supervised contexts
  • comparison of frequentist and Bayesian prediction methods
  • strategy optimization through hyperparamter tuning and ensemble methods (e.g. bagging)
  • workflow automation

List of developers and contributors

Documentation

The full documentation is available here.

Installation

Installation is easy using Python's package manager

$ pip install skpro

Contributing & Citation

We welcome contributions to the skpro project. Please read our contribution guide.

If you use skpro in a scientific publication, we would appreciate citations.

Comments
  • Distributions as return objects

    Distributions as return objects

    Re-opening the sub-issue opened in #3 and commented upon by @murphyk

    Question: should skpro's predict methods return a vector of distribution objects? For example, using the distributions from scipy.stats which implement methods pdf, cdf, mean, var, etc.

    Pro:

    • this would be using an existing, consolidated, and well-supported interface
    • it might be easier to use
    • it might be easier to understand

    Contra:

    • mixture types are not supported
    • l2 norm is not supported (as would be needed for squared/Gneiting loss)
    • mixed distributions on the reals, especially empirical distributions (weighted sum of deltas) which are returned by Bayesian packages are not supported
    • vectors of distributions are not supported, alternatively Cartesian products of distributions
    • this is not the status quo
    help wanted 
    opened by fkiraly 11
  • documentation: np.mean(y_pred) does not work

    documentation: np.mean(y_pred) does not work

    I'm following along with this intro example.. However this line fails

    (numpy.mean(y_pred) * 2).shape
    

    Error below (seems to be because Distribution objects don't support the mean() function but instead insist on obscurely calling it point!)

    np.mean(y_pred)
    Traceback (most recent call last):
    
      File "<ipython-input-38-19819be87ab5>", line 1, in <module>
        np.mean(y_pred)
    
      File "/home/kpmurphy/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py", line 2920, in mean
        out=out, **kwargs)
    
      File "/home/kpmurphy/anaconda3/lib/python3.7/site-packages/numpy/core/_methods.py", line 75, in _mean
        ret = umr_sum(arr, axis, dtype, out, keepdims)
    
    TypeError: unsupported operand type(s) for +: 'Distribution' and 'Distribution'
    
    opened by murphyk 3
  • First example: 'utils' not found

    First example: 'utils' not found

    The first example in your documentation (DensityBaseline) does not run right on my machine: it throws a 'module not found' exception at the call to 'utils'.

    This might be a python version problem (I am using 3.6), so perhaps it's not an error in the normal sense - though I don't see any specification that the package required a particular python version. Apologies if I missed it: in any case, I fixed it by importing matplotlib instead: i.e.

    import matplotlib.pyplot as plt plt.scatter(y_test, y_pred)

    instead of:

    import utils utils.plot_performance(y_test, y_pred)

    opened by Thomas-M-H-Hope 2
  • problem in loading the skpro

    problem in loading the skpro

    It has been 2 days that I am trying to import skpro. But I can not I keep getting this error:

    cannot import name 'six' from 'sklearn.externals' (C:\Users\My Book\anaconda3\lib\site-packages\sklearn\externals_init_.py)

    opened by honestee 1
  • (wish)list of probabilistic regressors to implement or to interface

    (wish)list of probabilistic regressors to implement or to interface

    A wishlist for probabilistic regression methods to implement or interface. This is partly copied from the R counterpart https://github.com/mlr-org/mlr3proba/issues/32 . Number of stars at the end is estimated difficulty or time investment.

    GLM

    • [ ] generalized linear model(s) with regression link, e.g., Gaussian *
    • [ ] generalized linear model(s) with count link, e.g., Poisson *
    • [ ] heteroscedastic linear regression ***
    • [ ] Bayesian GLM where conjugate priors are available, e.g., GLM with Gaussian link ***

    KRR aka Gaussian process regression

    • [ ] vanilla kernel ridge regression with fixed kernel parameters and variance *
    • [ ] kernel ridge regression with MLE for kernel parameters and regularization parameter **
    • [ ] heteroscedastic KRR or Gaussian processes ***

    CDE

    • [ ] variants of conditional density estimation (Nadaraya-Watson type) **
    • [ ] reduction to density estimation by binning of input variables, then apply unconditional density estimation **

    Tree-based

    • [ ] probabilistic regression trees **

    Neural networks

    • [ ] interface tensorflow probability - some hard-coded NN architectures **
    • [ ] generic tensorflow probability interface - some hard-coded NN architectures ***

    Bayesian toolboxes

    • [ ] generic pymc3 interface ***
    • [ ] generic pyro interface ****
    • [ ] generic Stan interface ****
    • [ ] generic JAGS interface ****
    • [ ] generic BUGS interface ****
    • [ ] generic Bayesian interface - prior-valued hyperparameters *****

    Pipeline elements for target transformation

    • [ ] distr fixed target transformation **
    • [ ] distr predictive target calibration **

    Composite techniques, reduction to deterministic regression

    • [ ] stick mean, sd, from a deterministic regressor which already has these as return types into some location/scale distr family (Gaussian, Laplace) *
    • [ ] use model 1 for the mean, model 2 fit to residuals (squared, absolute, or log), put this in some location/scale distr family (Gaussian, Laplace) **
    • [ ] upper/lower thresholder for a regression prediction, to use as a pipeline element for a forced lower variance bound **
    • [ ] generic parameter prediction by elicitation, output being plugged into parameters of a distr object not necessarily scale/location ****
    • [ ] reduction via bootstrapped sampling of a determinstic regressor **

    Ensembling type pipeline elements and compositors

    • [ ] simple bagging, averaging of pdf/cdf **
    • [ ] probabilistic boosting ***
    • [ ] probabilistic stacking ***

    baselines

    • [ ] always predict a Gaussian with mean = training mean, var = training var *
    • [ ] IMPORTANT as featureless baseline: reduction to distr/density estimation to produce an unconditional probabilistic regressor **
    • [ ] IMPORTANT as deterministic style baseline: reduction to deterministic regression, mean = prediction by det.regressor, var = training sample var, distr type = Gaussian (or Laplace) **

    Other reduction from/to probabilistic regression

    • [ ] reducing deterministic regression to probabilistic regression - take mean, median or mode **
    • [ ] reduction(s) to quantile regression, use predictive quantiles to make a distr ***
    • [ ] reducing deterministic (quantile) regression to probabilistic regression - take quantile(s) **
    • [ ] reducing interval regression to probabilistic regression - take mean/sd, or take quantile(s) **
    • [ ] reduction to survival, as the sub-case of no censoring **
    • [ ] reduction to classification, by binning ***
    good first issue 
    opened by fkiraly 0
  • skpro-refactoring (version-2)

    skpro-refactoring (version-2)

    See below some comments/description of the coming refactoring contents :

    • Distribution classes refactoring in a more OOD way (see. skpro->distribution)
    • Losse functions (see. metrics->distribution)
    • Estimators (see. metrics->distribution)

    Some descriptive notebooks (in docs->notebooks) and a full set of unit test (in tests) are also available.

    opened by jesellier 24
Releases(v1.0.1-beta)
Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021