Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Overview

logo

Inkstone simulates the electromagnetic properties of 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, vertical-cavity or photonic-crystal surface-emitting lasers (VCSEL, PCSEL), (patterned) solar cells, nano-antennas, and more.

Internally, Inkstone implements rigorous coupled-wave analysis (RCWA), a. k. a. Fourier Modal Method (FMM).

Inkstone can calculate:

  • the reflection, transmission, and absorption of the structure
  • the total and by-order power fluxes of the propagating and the evanescent waves in each layer
  • electric and magnetic field amplitudes at any locations in the structure,
  • band-structures based on the determinant of the scattering matrix of the structure.

Features of Inkstone:

  • It supports efficient and flexible parameter-scanning. You can change part of your structure such as the shapes and sizes of some patterns, or some material parameters. Inkstone only recalculates the modified parts and produces the final results efficiently.
  • It allows both tensorial permittivities and tensorial permeabilities, such as in anisotropic, magneto-optical, or gyromagnetic materials.
  • It can calculate the determinant of the scattering matrix on the complex frequency plane.
  • Pre-defined shapes of patterns can be used, including rectangular, parallelogram, disk, ellipse, 1D, and polygons. Closed-form Fourier transforms and corrections for Gibbs phenomena are implemented.
  • It is fully 3D.
  • It is written in pure python, with heavy-lifting done in numpy and scipy.

Quick Start

Installation:

$ pip install inkstone

Or,

$ git clone git://github.com/alexysong/inkstone
$ pip install .

Usage

The examples folder contains various self-explaining examples to get you started.

Dependencies

  • python 3.6+
  • numpy
  • scipy

Units, conventions, and definitions

Unit system

We adopt a natural unit system, where vacuum permittivity, permeability, and light speed are $\varepsilon_0=\mu_0=c_0=1$.

Sign convention

Sign conventions in electromagnetic waves:

$$e^{i(kx-\omega t)}$$

where $k$ is the wavevector, $x$ is spatial location, $\omega$ is frequency, $t$ is time.

By this convention, a permittivity of $\varepsilon_r + i\varepsilon_i$ with $\varepsilon_i>0$ means material loss, and $\varepsilon_i<0$ means material gain.

Coordinates and incident angles

drawing

(Inkstone, Incident $\bm{k}$ on stacked periodic nano electromagnetic structures.)

Citing

If you find Inkstone useful for your research, we would apprecite you citing our paper. For your convenience, you can use the following BibTex entry:

@article{song2018broadband,
  title={Broadband Control of Topological Nodes in Electromagnetic Fields},
  author={Song, Alex Y and Catrysse, Peter B and Fan, Shanhui},
  journal={Physical review letters},
  volume={120},
  number={19},
  pages={193903},
  year={2018},
  publisher={American Physical Society}
}
You might also like...
Code for
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

 Layered Neural Atlases for Consistent Video Editing
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Comments
  • Unable to verify Fresnel equations

    Unable to verify Fresnel equations

    Thank you for your transparent and usable Python port of S4.

    To verify that the code works correctly, I attempted to reproduce the Fresnel equations using a simple two layer model -- the first layer with n=1, and the second with n=1.5. I have been unable to get this to work in Inkstone, but I did get it to work with an equivalent code for Phoebe-P S4 . Attached are the codes I used for both Inkstone, fresnel_inkstone_te.py (which doesn't work); and S4, Fresnel_S4_TE.py (working).

    In inkstone, when I use angle = np.linspace(0, 90, 91) , I get the error: /inkstone/params.py:525: RuntimeWarning: Vacuum propagation constant 0 encountered. Possibly Wood's anomaly. warn("Vacuum propagation constant 0 encountered. Possibly Wood's anomaly.", RuntimeWarning)

    When I use angle = np.linspace(1, 90, 90) , I get the error: Traceback (most recent call last): File "fresnel_inkstone_te.py", line 71, in glapf, glapb = s.GetPowerFlux('gla') File "/inkstone/simulator.py", line 1204, in GetPowerFlux self.solve() File "/inkstone/simulator.py", line 890, in solve self._calc_sm() File "/inkstone/simulator.py", line 704, in _calc_sm s = next(ll[-1] for ll in self.csms if ll[-1][1] == n_layers-2) StopIteration

    If between the "air" air and "gla" glass layers, I add an intermediate layer: s.AddLayer(name='gla-int', thickness=1, material_background='glass')

    and still keep angle = np.linspace(1, 90, 90) then I get the error

    /.local/lib/python3.9/site-packages/inkstone/layer.py:545: RuntimeWarning: divide by zero encountered in divide vh = -1j * p @ v / w[:, None, :] /.local/lib/python3.9/site-packages/inkstone/layer.py:545: RuntimeWarning: invalid value encountered in divide vh = -1j * p @ v / w[:, None, :] Traceback (most recent call last): File "/inkstone/Fresnel_Inkstone/fresnel_inkstone_te.py", line 72, in glapf, glapb = s.GetPowerFlux('gla') File "/.local/lib/python3.9/site-packages/inkstone/simulator.py", line 1204, in GetPowerFlux self.solve() File "/.local/lib/python3.9/site-packages/inkstone/simulator.py", line 890, in solve self._calc_sm() File "/.local/lib/python3.9/site-packages/inkstone/simulator.py", line 682, in _calc_sm ll[ilm].solve() File "/.local/lib/python3.9/site-packages/inkstone/layer.py", line 702, in solve self._calc_im() File "/.local/lib/python3.9/site-packages/inkstone/layer.py", line 652, in _calc_im al0, bl0 = im(self.phil, self.psil, self.pr.phi0, self.pr.psi0, self._phil_is_idt) File "/.local/lib/python3.9/site-packages/inkstone/im.py", line 36, in im term2 = sla.solve(psi1, psi2) File "/.local/lib/python3.9/site-packages/scipy/linalg/_basic.py", line 140, in solve a1 = atleast_2d(_asarray_validated(a, check_finite=check_finite)) File "/.local/lib/python3.9/site-packages/scipy/_lib/_util.py", line 287, in _asarray_validated a = toarray(a) File "/.local/lib/python3.9/site-packages/numpy/lib/function_base.py", line 627, in asarray_chkfinite raise ValueError( ValueError: array must not contain infs or NaNs

    opened by matt8s 0
  • IndexError when calling

    IndexError when calling "ReconstructLayer"

    Hi,

    I'm trying to visualize the epsilon profile of the patterned layer named "slab" in the example file "phc_slab_circ_hole_spectrum.py", using ReconstructLayer (as defined on line 309 of simulator.py).

    I'm not entirely sure about the correct usage of ReconstructLayer but I'm just doing: s.ReconstructLayer('slab', 100, 100) or s.ReconstructLayer('slab') (since nx and ny both seem to default to 101). In both cases, I get the error:

    Traceback (most recent call last):
      File "phc_slab_circ_hole_spectrum.py", line 32, in <module>
        s.ReconstructLayer('slab')
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/inkstone/simulator.py", line 337, in ReconstructLayer
        result = self.layers[name].reconstruct(nx, ny)
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/inkstone/layer.py", line 395, in reconstruct
        for em in [fft.ifftshift(self.epsi_fs, axes=(0, 1)), fft.ifftshift(self.epsi_inv_fs, axes=(0, 1)), fft.ifftshift(self.mu_fs, axes=(0, 1)), fft.ifftshift(self.mu_inv_fs, axes=(0, 1))]]
      File "<__array_function__ internals>", line 6, in ifftshift
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/numpy/fft/helper.py", line 121, in ifftshift
        shift = [-(x.shape[ax] // 2) for ax in axes]
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/numpy/fft/helper.py", line 121, in <listcomp>
        shift = [-(x.shape[ax] // 2) for ax in axes]
    IndexError: tuple index out of range
    

    Could you please help me with this?

    Thanks!

    opened by sachin4594 0
Releases(v0.2.4-alpha)
Owner
Alex Song
Senior Lecturer at the University of Sydney. Research interests include nanophotonics, topological materials, non-Hermicity, quantum optics, and sustainability.
Alex Song
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022