Generative Models as a Data Source for Multiview Representation Learning

Related tags

Deep LearningGenRep
Overview

GenRep

Project Page | Paper

Generative Models as a Data Source for Multiview Representation Learning
Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip Isola

Prerequisites

  • Linux
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Table of Contents:

  1. Setup
  2. Visualizations - plotting image panels, videos, and distributions
  3. Training - pipeline for training your encoder
  4. Testing - pipeline for testing/transfer learning your encoder
  5. Notebooks - some jupyter notebooks, good place to start for trying your own dataset generations
  6. Colab Demo - a colab notebook to demo how the contrastive encoder training works

Setup

  • Clone this repo:
git clone https://github.com/ali-design/GenRep
  • Install dependencies:
    • we provide a Conda environment.yml file listing the dependencies. You can create a Conda environment with the dependencies using:
conda env create -f environment.yml
  • Download resources:
    • we provide a script for downloading associated resources. Fetch these by running:
bash resources/download_resources.sh

Visualizations

Plotting contrasting images:

  • Run simclr_views_paper_figure.ipynb and supcon_views_paper_figure.ipynb to get the anchors and their contrastive pairs showin in the paper.

  • To generate more images run biggan_generate_samples_paper_figure.py.


Training encoders

  • The current implementation covers these variants:
    • Contrastive (SimCLR and SupCon)
    • Inverters
    • Classifiers
  • Some examples of commands for training contrastive encoders:
# train a SimCLR on an unconditional IGM dataset (e.g. your dataset is generated by a Gaussian walk, called my_gauss in a GANs model)
CUDA_VISIBLE_DEVICES=0,1 python main_unified.py --method SimCLR --cosine \ 
	--dataset path_to_your_dataset --walk_method my_gauss \ 
	--cache_folder your_ckpts_path >> log_train_simclr.txt &

# train a SupCon on a conditional IGM dataset (e.g. your dataset is generated by steering walks, called my_steer in a GANs model)
CUDA_VISIBLE_DEVICES=0,1 python main_unified.py --method SupCon --cosine \
	--dataset path_to_your_dataset --walk_method my_steer \ 
	--cache_folder your_ckpts_path >> log_train_supcon.txt &
  • If you want to find out more about training configurations, you can find the yml file of each pretrained models in models_pretrained

Testing encoders

  • You can currently test (i.e. trasfer learn) your encoder on:
    • ImageNet linear classification
    • PASCAL classification
    • PASCAL detection

Imagenet linear classification

Below is the command to train a linear classifier on top of the features learned

# test your unconditional or conditional IGM trained model (i.e. the encoder you trained in the previous section) on ImageNet
CUDA_VISIBLE_DEVICES=0,1 python main_linear.py --learning_rate 0.3 \ 
	--ckpt path_to_your_encoder --data_folder path_to_imagenet \
	>> log_test_your_model_name.txt &

Pascal VOC2007 classification

To test classification on PascalVOC, you will extract features from a pretrained model and run an SVM on top of the futures. You can do that running the following code:

cd transfer_classification
./run_svm_voc.sh 0 path_to_your_encoder name_experiment path_to_pascal_voc

The code is based on FAIR Self-Supervision Benchmark

Pascal VOC2007 detection

To test transfer in detection experiments do the following:

  1. Enter into transfer_detection
  2. Install detectron2, replacing the detectron2 folder.
  3. Convert the checkpoints path_to_your_encoder to detectron2 format:
python convert_ckpt.py path_to_your_encoder output_ckpt.pth
  1. Add a symlink from the PascalVOC07 and PascalVOC12 into the datasets folder.
  2. Train the detection model:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train_net.py \
      --num-gpus 8 \
      --config-file config/pascal_voc_R_50_C4_transfer.yaml \
      MODEL.WEIGHTS ckpts/${name}.pth \
      OUTPUT_DIR outputs/${name}

Notebooks

source activate genrep_env
python -m ipykernel install --user --name genrep_env

Colab

git Acknowledgements

We thank the authors of these repositories:

Citation

If you use this code for your research, please cite our paper:

@article{jahanian2021generative, 
	title={Generative Models as a Data Source for Multiview Representation Learning}, 
	author={Jahanian, Ali and Puig, Xavier and Tian, Yonglong and Isola, Phillip}, 
	journal={arXiv preprint arXiv:2106.05258}, 
	year={2021} 
}
Owner
Ali
Research scientist @ MIT.
Ali
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021