The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Overview

Interscript

The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts.

overview


Dataset

  • data.json contains the data in an easy to read JSON format. data.jsonl contains the data in a JSONL format. The file contains 8466 samples, one sample per line. Every sample is a JSON object with the following fields:
 {
        "input_script": "push chair in -> pull chair in; pull chair in -> push chair against wall; push chair against wall -> straighten chair legs; straighten chair legs -> Push all chairs in; line up the chairs -> push chair in",
        "input_feedback": "One would not pull chair in if they had initially pushed it in.",
        "output_script": "push chair against wall -> straighten chair legs;straighten chair legs -> Push all chairs in;line up the chairs -> push chair in;push chair in -> push chair against wall",
        "metadata": {
            "id": "301KG0KX9BKTC0HB7Z9SV1Y5HAFH2Y.2_implicit.gp",
            "goal": "push all chairs in",
            "is_distractor": false,
            "feedback_type": "implicit.gp",
            "edit": "Remove node 'pull chair in'",
            "input_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. pull chair in",
                "4. push chair against wall",
                "5. straighten chair legs",
                "6. Push all chairs in"
            ],
            "output_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. push chair against wall",
                "4. straighten chair legs",
                "5. Push all chairs in"
            ]
        }
    }

The description of the fields is as follows:

  1. input_script: Model generated script $y_{bad}$.
  2. input_feedback: User feedback on the input script $f$.
  3. output_script: Fixed output script $y_{good}$.

Metadata contains additional information about the sample. Some important fields are:

  1. id: Unique identifier of the sample.
  2. goal: Goal of the script.
  3. is_distractor: Whether the feedback is a distractor (please see Section 4 for more details).
  4. feedback_type: Type of feedback (please see Section 4 "Annotation" for more details).
  5. edit: The input_feedback presented as an edit operation on the input script, that is, the edit operation that transforms the input script into the output script.
  6. input_script_formatted: The input script presented as a list of sentences.
  7. output_script_formatted: The output script presented as a list of sentences.

Data collection process

  • We use Amazon Mechanical Turk to collect feedback on erroneous scripts from users.
  • An overview of the process is captured in the following figure:

datacollection

Amazon Mechanical Turk Template

PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023