Sentinel-1 vessel detection model used in the xView3 challenge

Overview

sar_vessel_detect

Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR images. See whitepaper.pdf for a summary of our approach.

Dependencies

Install dependiences using conda:

cd sar_vessel_detect/
conda env create -f environment.yml

Pre-processing

First, ensure that training and validation scenes are extracted to the same directory, e.g. /xview3/all/images/. The training and validation labels should be concatenated and written to a CSV file like /xview3/all/labels.csv.

Prior to training, the large scenes must be split up into 800x800 windows (chips). Set paths and parameters in data/configs/chipping_config.txt, and then run:

cd sar_vessel_detect/src/
python -m xview3.processing.preprocessing ../data/configs/chipping_config.txt

Initial Training

We first train a model on the 50 xView3-Validation scenes only. We will apply this model in the xView3-Train scenes, and incorporate high-confidence predictions as additional labels. This is because xView3-Train scenes are not comprehensively labeled since most labels are derived automatically from AIS tracks.

To train, set paths and parameters in data/configs/initial.txt, and then run:

python -m xview3.training.train ../data/configs/initial.txt

Apply the trained model in xView3-Train, and incorporate high-confidence predictions as additional labels:

python -m xview3.infer.inference --image_folder /xview3/all/images/ --weights ../data/models/initial/best.pth --output out.csv --config_path ../data/configs/initial.txt --padding 400 --window_size 3072 --overlap 20 --scene_path ../data/splits/xview-train.txt
python -m xview3.eval.prune --in_path out.csv --out_path out-conf80.csv --conf 0.8
python -m xview3.misc.pred2label out-conf80.csv /xview3/all/chips/ out-conf80-tolabel.csv
python -m xview3.misc.pred2label_concat /xview3/all/chips/chip_annotations.csv out-conf80-tolabel.csv out-conf80-tolabel-concat.csv
python -m xview3.eval.prune --in_path out-conf80-tolabel-concat.csv --out_path out-conf80-tolabel-concat-prune.csv --nms 10
python -m xview3.misc.pred2label_fixlow out-conf80-tolabel-concat-prune.csv
python -m xview3.misc.pred2label_drop out-conf80-tolabel-concat-prune.csv out.csv out-conf80-tolabel-concat-prune-drop.csv
mv out-conf80-tolabel-concat-prune-drop.csv ../data/xval1b-conf80-concat-prune-drop.csv

Final Training

Now we can train the final object detection model. Set paths and parameters in data/configs/final.txt, and then run:

python -m xview3.training.train ../data/configs/final.txt

Attribute Prediction

We use a separate model to predict is_vessel, is_fishing, and vessel length.

python -m xview3.postprocess.v2.make_csv /xview3/all/chips/chip_annotations.csv out.csv ../data/splits/our-train.txt /xview3/postprocess/labels.csv
python -m xview3.postprocess.v2.get_boxes /xview3/postprocess/labels.csv /xview3/all/chips/ /xview3/postprocess/boxes/
python -m xview3.postprocess.v2.train /xview3/postprocess/model.pth /xview3/postprocess/labels.csv /xview3/postprocess/boxes/

Inference

Suppose that test images are in a directory like /xview3/test/images/. First, apply the object detector:

python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20
python -m xview3.eval.prune --in_path out.csv --out_path out-prune.csv --nms 10

Now apply the attribute prediction model:

python -m xview3.postprocess.v2.infer /xview3/postprocess/model.pth out-prune.csv /xview3/test/chips/ out-prune-attribute.csv attribute

Test-time Augmentation

We employ test-time augmentation in our final submission, which we find provides a small 0.5% performance improvement.

python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-1.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20
python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-2.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20 --fliplr True
python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-3.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20 --flipud True
python -m xview3.infer.inference --image_folder /xview3/test/images/ --weights ../data/models/final/best.pth --output out-4.csv --config_path ../data/configs/final.txt --padding 400 --window_size 3072 --overlap 20 --fliplr True --flipud True
python -m xview3.eval.ensemble out-1.csv out-2.csv out-3.csv out-4.csv out-tta.csv
python -m xview3.eval.prune --in_path out-tta.csv --out_path out-tta-prune.csv --nms 10
python -m xview3.postprocess.v2.infer /xview3/postprocess/model.pth out-tta-prune.csv /xview3/test/chips/ out-tta-prune-attribute.csv attribute

Confidence Threshold

We tune the confidence threshold on the validation set. Repeat the inference steps with test-time augmentation on the our-validation.txt split to get out-validation-tta-prune-attribute.csv. Then:

python -m xview3.eval.metric --label_file /xview3/all/chips/chip_annotations.csv --scene_path ../data/splits/our-validation.txt --costly_dist --drop_low_detect --inference_file out-validation-tta-prune-attribute.csv --threshold -1
python -m xview3.eval.prune --in_path out-tta-prune-attribute.csv --out_path submit.csv --conf 0.3 # Change to the best confidence threshold.

Inquiries

For inquiries, please open a Github issue.

Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021