This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Overview

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection

This is a PyTorch implementation of the LipForensics paper.

This is an Unofficially implemented codes with some Official code. I made this repo to use more conveniently.

If you want to see the Original code, You can cite this link

You should try the preprocessing, which steps are firstly getting landmarks and then cropping mouth.

Setup

Install packages

pip install -r requirements.txt

Note: we used Python version 3.8 to test this code.

Prepare data

  1. Follow the links below to download the datasets (you will be asked to fill out some forms before downloading):

  2. Extract the frames (e.g. using code in the FaceForensics++ repo.) The filenames of the frames should be as follows: 0000.png, 0001.png, ....

  3. Detect the faces and compute 68 face landmarks. For example, you can use RetinaFace and FAN for good results.

  4. Place face frames and corresponding landmarks into the appropriate directories:

    • For FaceForensics++, FaceShifter, and DeeperForensics, frames for a given video should be placed in data/datasets/Forensics/{dataset_name}/{compression}/images/{video}, where dataset_name is RealFF (real frames from FF++), Deepfakes, FaceSwap, Face2Face, NeuralTextures, FaceShifter, or DeeperForensics. dataset_name is c0, c23, or c40, corresponding to no compression, low compression, and high compression, respectively. video is the video name and should be numbered as follows: 000, 001, .... For example, the frame 0102 of real video 067 at c23 compression is found in data/datasets/Forensics/RealFF/c23/images/067/0102.png
    • For CelebDF-v2, frames for a given video should be placed in data/datasets/CelebDF/{dataset_name}/images/{video} where dataset_name is RealCelebDF, which should include all real videos from the test set, or FakeCelebDF, which should include all fake videos from the test set.
    • For DFDC, frames for a given video should be placed in data/datasets/DFDC/images (both real and fake). The video names from the test set we used in our experiments are given in data/datasets/DFDC/dfdc_all_vids.txt.

    The corresponding computed landmarks for each frame should be placed in .npy format in the directories defined by replacing images with landmarks above (e.g. for video "000", the .npy files for each frame should be placed in data/datasets/Forensics/RealFF/c23/landmarks/000).

  5. To crop the mouth region from each frame for all datasets, run

    python preprocessing/crop_mouths.py --dataset all

    This will write the mouth images into the corresponding cropped_mouths directory.

Evaluate

  • Cross-dataset generalisation (Table 2 in paper):
    1. Download the pretrained model and place into models/weights. This model has been trained on FaceForensics++ (Deepfakes, FaceSwap, Face2Face, and NeuralTextures) and is the one used to get the LipForensics video-level AUC results in Table 2 of the paper, reproduced below:

      CelebDF-v2 DFDC FaceShifter DeeperForensics
      82.4% 73.5% 97.1% 97.6%
    2. To evaluate on e.g. FaceShifter, run

      python evaluate.py --dataset FaceShifter --weights_forgery ./models/weights/lipforensics_ff.pth

Citation

If you find this repo useful for your research, please consider citing the following:

@inproceedings{haliassos2021lips,
  title={Lips Don't Lie: A Generalisable and Robust Approach To Face Forgery Detection},
  author={Haliassos, Alexandros and Vougioukas, Konstantinos and Petridis, Stavros and Pantic, Maja},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5039--5049},
  year={2021}
}
Owner
Minha Kim
@DASH-Lab on Sungkyunkwan University in Korea
Minha Kim
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023