CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

Overview

CausalNLP

CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

Install

  1. pip install -U pip
  2. pip install causalnlp

Usage

Example: What is the causal impact of a positive review on a product click?

import pandas as pd
df = pd.read_csv('sample_data/music_seed50.tsv', sep='\t', error_bad_lines=False)

The file music_seed50.tsv is a semi-simulated dataset from here. Columns of relevance include:

  • Y_sim: outcome, where 1 means product was clicked and 0 means not.
  • text: raw text of review
  • rating: rating associated with review (1 through 5)
  • T_true: 1 means rating less than 3, 0 means rating of 5, where T_true affects the outcome Y_sim.
  • T_ac: an approximation of true review sentiment (T_true) created with Autocoder from raw review text
  • C_true:confounding categorical variable (1=audio CD, 0=other)

We'll pretend the true sentiment (i.e., review rating and T_true) is hidden and only use T_ac as the treatment variable.

Using the text_col parameter, we include the raw review text as another "controlled-for" variable.

from causalnlp.causalinference import CausalInferenceModel
from lightgbm import LGBMClassifier
cm = CausalInferenceModel(df, 
                         metalearner_type='t-learner', learner=LGBMClassifier(num_leaves=500),
                         treatment_col='T_ac', outcome_col='Y_sim', text_col='text',
                         include_cols=['C_true'])
cm.fit()
outcome column (categorical): Y_sim
treatment column: T_ac
numerical/categorical covariates: ['C_true']
text covariate: text
preprocess time:  1.1179866790771484  sec
start fitting causal inference model
time to fit causal inference model:  10.361494302749634  sec

Estimating Treatment Effects

CausalNLP supports estimation of heterogeneous treatment effects (i.e., how causal impacts vary across observations, which could be documents, emails, posts, individuals, or organizations).

We will first calculate the overall average treatment effect (or ATE), which shows that a positive review increases the probability of a click by 13 percentage points in this dataset.

Average Treatment Effect (or ATE):

print( cm.estimate_ate() )
{'ate': 0.1309311542209525}

Conditional Average Treatment Effect (or CATE): reviews that mention the word "toddler":

print( cm.estimate_ate(df['text'].str.contains('toddler')) )
{'ate': 0.15559234254638685}

Individualized Treatment Effects (or ITE):

test_df = pd.DataFrame({'T_ac' : [1], 'C_true' : [1], 
                        'text' : ['I never bought this album, but I love his music and will soon!']})
effect = cm.predict(test_df)
print(effect)
[[0.80538201]]

Model Interpretability:

print( cm.interpret(plot=False)[1][:10] )
v_music    0.079042
v_cd       0.066838
v_album    0.055168
v_like     0.040784
v_love     0.040635
C_true     0.039949
v_just     0.035671
v_song     0.035362
v_great    0.029918
v_heard    0.028373
dtype: float64

Features with the v_ prefix are word features. C_true is the categorical variable indicating whether or not the product is a CD.

Text is Optional in CausalNLP

Despite the "NLP" in CausalNLP, the library can be used for causal inference on data without text (e.g., only numerical and categorical variables). See the examples for more info.

Documentation

API documentation and additional usage examples are available at: https://amaiya.github.io/causalnlp/

How to Cite

Please cite the following paper when using CausalNLP in your work:

@article{maiya2021causalnlp,
    title={CausalNLP: A Practical Toolkit for Causal Inference with Text},
    author={Arun S. Maiya},
    year={2021},
    eprint={2106.08043},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    journal={arXiv preprint arXiv:2106.08043},
}
You might also like...
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of given options.

This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

This is a repository for a semantic segmentation inference API using the OpenVINO toolkit
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone [email protected]

Comments
  • Does your model support other languages than English?

    Does your model support other languages than English?

    Hi Amaiya, Thanks for your great package. Would you kindly let me know if your package supports languages other than English when using CausalBert?

    I'm also interested in knowing whether I can exploit other Transformers models from the Huggingface hub?

    question 
    opened by behroozazarkhalili 1
  • Error while fitting the model

    Error while fitting the model

    Hi,

    I ran to this bug while fitting the model. I checked the data and everything looks good. I don't get the root cause of this error.

    File /opt/conda/lib/python3.8/site-packages/causalnlp/meta/slearner.py:80, in BaseSLearner.fit(self, X, treatment, y, p)
         78 mask = (treatment == group) | (treatment == self.control_name)
         79 treatment_filt = treatment[mask]
    ---> 80 X_filt = X[mask]
         81 y_filt = y[mask]
         83 w = (treatment_filt == group).astype(int)
    
    IndexError: boolean index did not match indexed array along dimension 0
    
    opened by hfarhidzadeh 1
Releases(v0.7.0)
  • v0.7.0(Aug 2, 2022)

  • v0.6.0(Oct 20, 2021)

    0.6.0 (2021-10-20)

    New:

    • Added model_name parameter to CausalBertModel to support other DistilBert models (e.g., multilingual)

    Changed

    • N/A

    Fixed:

    • N/A
    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Sep 3, 2021)

    0.5.0 (2021-09-03)

    New:

    • Added support for CausalBert

    Changed

    • Added p parameter to CausalInferenceModel.fit and CausalInferenceModel.predict for user-supplied propensity scores in X-Learner and R-Learner.
    • Removed CV from propensity score computations in X-Learner and R-Learner and increase default max_iter to 10000

    Fixed:

    • Resolved problem with CausalInferenceModel.tune_and_use_default_learner when outcome is continuous
    • Changed to max_iter=10000 for default LogisticRegression base learner
    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(Sep 3, 2021)

    0.4.0 (2021-07-20)

    New:

    • N/A

    Changed

    • Use LinearRegression and LogisticRegression as default base learners for s-learner.
    • changed parameter name of metalearner_type to method in CausalInferenceModel.

    Fixed:

    • Resolved mis-references in _balance method (renamed from _minimize_bias).
    • Fixed convergence issues and factored out propensity score computations to CausalInferenceModel.compute_propensity_scores.
    Source code(tar.gz)
    Source code(zip)
  • v0.3.1(Jul 19, 2021)

  • v0.3.0(Jul 15, 2021)

    0.3.0 (2021-07-15)

    New:

    • Added CausalInferenceModel.evaluate_robustness method to assess robustness of causal estimates using sensitivity analysis

    Changed

    • reduced dependencies with local metalearner implementations

    Fixed:

    • N/A
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 21, 2021)

  • v0.1.3(Jun 17, 2021)

  • v0.1.2(Jun 17, 2021)

    0.1.2 (2021-06-17)

    New:

    • N/A

    Changed

    • Better interpretability and explainability of treatment effects

    Fixed:

    • Fixes to some bugs in preprocessing
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Jun 17, 2021)

  • v0.1.0(Jun 16, 2021)

Owner
Arun S. Maiya
computer scientist
Arun S. Maiya
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022