Code for Multimodal Neural SLAM for Interactive Instruction Following

Overview

Code for Multimodal Neural SLAM for Interactive Instruction Following

Code structure

The code is adapted from E.T. and most training as well as data processing files are in currently in the ET/notebooks folder and the et_train folder.

Dependency

Inherited from the E.T. repo, the package is depending on:

  • numpy
  • pandas
  • opencv-python
  • tqdm
  • vocab
  • revtok
  • numpy
  • Pillow
  • sacred
  • etaprogress
  • scikit-video
  • lmdb
  • gtimer
  • filelock
  • networkx
  • termcolor
  • torch==1.7.1
  • torchvision==0.8.2
  • tensorboardX==1.8
  • ai2thor==2.1.0
  • E.T. (https://github.com/alexpashevich/E.T.)

MaskRCNN Fine-tuning

To fine-tune the MaskRCNN module used in solving the Alfred challenge, we provide the code adapted from the official PyTorch tutorial.

Setup

We assume the environment and the code structure as in the E.T. model is set up, with this repo served as an extension. Although the fine-tuning code should be a standalone unit.

Training Data Geneation

Given a traj_data.json file (e.g., the 45K one used in E.T. joint-training here), run python -m alfred.gen.render_trajs as in E.T. to render the training inputs (raw images) and the ground truth labels (instance segmentation masks) for all the frames recorded in the traj_data.json files. Make sure the flag for generating instance level segmentation masks is set to True.

Pre-processing Instance Segmentation Masks

The rendered instance segmentation masks need to be preprocessed so that the data format is aligned with the one used in the official PyTorch tutorial. In specific, each generated mask is of a different RGB color per instance, which is mapped to the unique instance index in the frame as well as a label index for its semantic class. The mapping is constructed by looking up the traj['scene']['color_to_object_type'] in each of the json dictionaries. The code also supports the functionality to only collect training data from certain subgoal data (such as for PickupObject in Alfred). Notice that there are some bugs in the rendering process of the masks which creates some artifacts (small regions in the ground truth labels that correspond to no actual objects). This can be fixed by only selecting instance masks that are larger than certain area (e.g., > 10 as in alfred/data/maskrcnn.py).

Training

Run python -m alfred.maskrcnn.train which first loads the pre-trained model provided by E.T. and then fine-tunes it on the pre-processed data mentioned above.

Evaluation

We follow the MSCOCO evaluation protocal which is widely used for object detection and instance segmentation, which output average precision and recall at multiple scales. The evaluation function call evaluate(model, data_loader_test, device=device) in alfred/maskrcnn/train.py serves as an example.

Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Jihye Back 520 Jan 04, 2023
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022